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Abstract 

Recent years have seen an explosion of data volumes from 

a myriad of distributed sources such as ubiquitous cameras and 

various sensors. The challenges of analyzing these geograph-

ically dispersed datasets are increasing due to the significant 

data movement overhead, time-consuming data aggregation, 

and escalating energy needs. Rather than constantly move a 

tremendous amount of raw data to remote warehouse-scale 

computing systems for processing, it would be beneficial to 

leverage in-situ server systems (InS) to pre-process data, i.e., 

bringing computation to where the data is located.  

This paper takes the first step towards designing server 

clusters for data processing in the field. We investigate two 

representative in-situ computing applications, where data is 

normally generated from environmentally sensitive areas or 

remote places that lack established utility infrastructure. These 

very special operating environments of in-situ servers urge us 

to explore standalone (i.e., off-grid) systems that offer the op-

portunity to benefit from local, self-generated energy sources. 

In this work we implement a heavily instrumented proof-of-

concept prototype called InSURE: in-situ server systems using 

renewable energy. We develop a novel energy buffering mech-

anism and a unique joint spatio-temporal power management 

strategy to coordinate standalone power supplies and in-situ 

servers. We present detailed deployment experiences to quanti-

fy how our design fits with in-situ processing in the real world. 

Overall, InSURE yields 20%~60% improvements over a state-

of-the-art baseline. It maintains impressive control effective-

ness in under-provisioned environment and can economically 

scale along with the data processing needs. The proposed de-

sign is well complementary to today’s grid-connected cloud 

data centers and provides competitive cost-effectiveness. 

1. Introduction 
Although many of the computing resources today are host-

ed in data centers, a tremendous amount of datasets are gener-

ated from distributed machines, monitors, meters, and various 

sensors. For example, there are approximately 30 million sur-

veillance cameras deployed across the U.S., recording over 4 

billion hours a week [1]. Even a single camera can create hun-

dreds of gigabytes (GB) of data on a daily basis [2]. Similarly, 

smart sensors designed to monitor a wide area can easily gener-

ate several terabytes (TB) of data within a week [3]. Moreover, 

today’s fast-growing scientific datasets (e.g., climate data and 

genome data) are typically distributed among many stations and 

research institutions around the world. Such wide-area collabo-

ration on location-dependent data normally requires a routine 

data sharing of tens of petabytes (PB) every year [4]. According 

to a recent study by the Gartner Inc., transferring all these dis-

tributed datasets to a central location for processing will not be 

technically and economically viable in the big data era [5]. 

The enormous amount of data that generated from distrib-

uted sources present significant challenges for data movement, 

especially when the volume and velocity of data are beyond the 

capability and capacity of today’s commodity machines. Figure 

1-(a) shows the data transfer time of 1 TB for typical network 

speed. Without high-throughput and scalable network, it could 

take days or weeks to move terabytes of data into the cloud [6, 

7]. While the 10 Gigabit Ethernet-enabled equipment and 

emerging 40 Gigabit Ethernet are making their way into a data 

center’s core backbone network, they are still not widely adopt-

ed at the network edge (i.e., near data source) due to high capi-

tal cost (CapEx) [8, 9]. As a result, Amazon Web Service 

(AWS) and Google Offline Disk Import now allow users to 

accelerate bulk data movement by shipping hard disks [10, 11]. 

Although some third-party solutions such as CERN’s File 

Transfer Service [12] and LIGO’s Data Replicator [13] could 

provide advanced data movement, they often require complex 

software and dedicated infrastructures, and therefore are only 

limited to very few scientific research communities [14].  

In addition, the operating cost (OpEx) associated with data 

migration can quickly mount up. For example, Globus, a well-

established bulk data sharing service provider, charges $1,950 

per month for a 300 TB data transfer limit [15]. As of January 

2014, Amazon charges over $60 for every 1 TB of data trans-

ferred out of its data centers, as shown in Figure 1-(b).  

More importantly, for many data-driven projects that lack 

broadband access, the data movement issue becomes particular-

ly acute. Some examples include oil/gas exploration [16], rural 

geographical surveying [17], astronomy observing in remote 

area [18], video surveillance for wildlife behavioral studies [19] 

and epidemic monitoring (e.g., Ebola) in Africa. While satel-

lite/microwave based transmission has been used in some cases, 

it can cost over thousands of dollars per month with very lim-

ited network bandwidth [20]. 
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(a) Transfer time [6, 7] (b) Transfer cost 

Figure 1: The overhead associated with bulk data movement 
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Rather than constantly move a huge amount of data to a 

central data warehouse for processing, we instead explore a 

fundamentally different approach: tapping into in-situ server 

systems (InS). The idea is to bring servers to where data is lo-

cated to pre-process part, if not all, of the datasets. For instance, 

these servers can be used to eliminate duplicate copies, com-

press logs, or normalize data formats. Recently, a similar in-situ 

data processing scheme called fog computing has been pro-

posed by Cisco to help prevent cloud systems from being 

overwhelmed [21]. However, it only uses Cisco’s routers to 

process network traffic. The idea of in-situ computing has also 

been used in the HPC community to solve the I/O overhead for 

compute-intensive workloads [22, 23]. In this work we repur-

pose this concept to design server systems that can accelerate or 

facilitate the processing of distributed raw datasets. 

Our interest in in-situ server systems also arises out of the 

fact that modern data centers are heavily power-constrained, 

particularly when they employ power over-subscription to re-

duce cost. In the past five years, 70% companies have to build 

new data centers or significantly renovate existing facilities to 

handle the ever-growing traffic [24]. Meanwhile, recent studies 

are forced to aggressively discharge backup batteries to provi-

sion more servers under existing power budget [25-27]. As data 

continues to flood into data centers, it is not unusual that the 

utility power feeds are at full capacity and data centers do not 

have enough power to accommodate their growth [28, 29].  

A significant challenge associated with in-situ processing 

is efficient power provisioning for servers running in the field. 

We find that a standalone wind/solar system with batteries as 

green energy buffer (e-Buffer) best suits the needs of in-situ 

servers and demands more attention for several reasons. First, 

conventional grid-tied designs may not be applicable since the 

construction and operation of transmission lines are often pro-

hibitive in remote areas and hazardous locations. Even if the 

power line extension is technically feasible, grid-tied servers 

can violate environmental quality regulations in rural areas that 

are ecologically sensitive [30, 31]. In fact, to cap the significant 

IT carbon footprint, recent studies have already started to har-

ness the power of green energy [32-39]. Further, in contrast to 

some other generators such as fuel cells and gas-turbines, wind 

and solar systems have many advantages such as absence of 

fuel delivery, easy maintenance, and less carbon emissions.  

In this paper we present InSURE: in-situ server system 

using renewable energy. As Figure 2 shows, we explore the 

opportunity to benefit from data pre-processing using a group 

of inexpensive, commodity servers that are placed near the data 

source. Specifically, we are primarily interested in in-situ da-

tasets that need to be processed timely but do not have a very 

strong requirement for real-time processing. In fact, it has been 

shown that about 85% big data processing tasks can be deferred 

by a day [40]. Therefore, even if the renewable power output is 

intermittent and time-varying, we can still leverage it for pro-

cessing many delay-tolerant data sets.  

The main obstacle we face in developing InSURE is the 

lack of a cross-layer power management scheme that spans 

standalone power supplies and in-situ server systems. On the 

one hand, it is important to match the throughput of server clus-

ters to the data processing demand. This allows InSURE users 

to timely process newly generated logs (so that geologists can 

use it to adjust their survey strategies) and to efficiently com-

press archival data (so that surveillance videos can be stored for 

extended periods). On the other hand, one must keep a watchful 

eye on the energy systems that directly support our servers. 

Without appropriate coordination, one may either lose the op-

portunity of harvesting enough renewable energy or incur un-

expected power anomalies. Consequently, it can cause unneces-

sary data processing delay or even server shutdown. 

To overcome the above issue, we have developed a novel 

energy buffering mechanism and a unique joint spatio-temporal 

power management strategy that are tailored to the specific 

power behavior of standalone in-situ servers. They enable our 

system to intelligently reconfigure the size of energy buffer and 

accordingly adjust in-situ server loads during runtime. These 

two techniques provide several key benefits. First, they increase 

the overall efficiency of power delivery from standalone power 

supplies to in-situ server loads under varying renewable energy 

generation conditions. Second, they can greatly mitigate the 

frequency of server load shedding caused by various in-situ 

workload triggered demand-supply power mismatches. Third, 

they also balance the usage of different energy storage units 

and improve the longevity of our energy buffers. 

We have implemented InSURE as a full-system prototype. 

It is a fusion of modular solar panels (1.6KW), a professionally 

assembled energy storage system, a Xeon-based micro server 

cluster, a software management platform built from scratch, 

and several other components such as internal communication 

infrastructure, power meters, and micro-controllers. Using our 

prototype and real in-situ workloads, we explore the technical 

and economic feasibility of in-situ data processing. We show 

that the proposed design is highly sustainable and is well com-

plementary to cloud data center in the big data era.  

 This paper makes the following key contributions: 

 We explore in-situ servers (InS) for managing distributed 

big datasets today and tomorrow. We present InSURE, an 

in-situ (standalone) server system using renewable energy, 

and discuss its essential design considerations. 

 We propose a novel energy buffering mechanism and a 

joint spatio-temporal power management scheme tailored 

to the behaviors of InSURE. It ensures highly efficient en-

ergy flow from the power supply to in-situ servers. 

 We implement InSURE as a system prototype. We present 

detailed deployment experiences, demonstrate key design 

tradeoffs, and show that our optimizations can improve 

various measurement metrics by 20%~60%. 

 We evaluate the cost benefits of InSURE. We show that it 

can economically scale along with different computing 

needs under various renewable energy availabilities.  

Data Warehouse ( Large Data Center)

Power 

Plant

Transformer

Power Line

In Situ Systems 

( Micro Data Centers )

data

data

data

Gateway

 
Figure 2: In-situ server system as an ancillary to future cloud 
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The rest of this paper is organized as follows. Section 2 in-

troduces InS. Section 3 proposes InSURE and its optimizations. 

Section 4 demonstrates our system prototype. Section 5 de-

scribes experimental methodology. Section 6 details deploy-

ment experiences and presents real-world case studies. Section 

7 discusses related work and Section 8 concludes this paper.  

2. In-Situ Standalone Systems: An Overview 

 The core idea of InS is to provide non-intrusive, eco-

friendly data processing to minimize the overhead of bringing 

data to compute resource in the big data era. This section elabo-

rates the concept of in-situ standalone systems and further mo-

tivates our design. We start by introducing typical in-situ appli-

cations and evaluating major cost issues. We then describe the 

properties of standalone energy systems with an emphasis on 

green energy buffers. Finally, we discuss the importance of 

smartly coordinating InS and standalone energy systems. 

2.1 In-Situ Workloads and Cost Benefits 

 We investigate two representative types of applications 

that may benefit from in-situ computing: intermittent batch job 

and continuous data stream. The former normally has large 

files that are generated periodically (often seen in engineering 

projects), while the latter faces constant influx of medium-sized 

data created by multiple machines (e.g., sensor data).  

 Oil Exploration (intermittent batch job): In oil and gas 

industry, massive volumes of seismic data is collected and ana-

lyzed to guide the site selection and drilling [41]. An oil explo-

ration project may involve tens of thousands of micro-seismic 

tests and each test can generate multiple terabytes of data [42]. 

Conventionally, these experiment data are processed at remote 

HPC cluster and usually rely on either expensive telecommuni-

cation transmission (e.g. via commercial satellite [20]) or time-

consuming delivery via portable storage devices.  

 Video Surveillance (continuous data stream): Surveil-

lance cameras are often deployed in hard-to-reach or hazardous 

areas to provide an understanding of wild life behaviors, volca-

no activities, and the source of local epidemics, etc. Many of 

these projects need a large volume of real-time and high-

fidelity data which is far beyond the ability and capacity of 

conventional video monitoring systems. Conventional solution 

incurs huge human effort (e.g., manual data retrieval) and ex-

poses researchers to hazard. It also incurs significant data stor-

age overhead and time-consuming data aggregation. 

 We deploy 8 virtual machines (each VM has 4G memory 

and 2 virtual CPUs) on four HP ProLiant servers. We use open-

source seismic data analysis software Madagascar [43] on 6 

VM instances to conduct batch seismic data analysis. The in-

situ workload is geographical surveying dataset for 225 square 

kilometers of real oil field [44]. We assume the seismic explo-

ration happens twice a day and the data volume is 114GB per 

job. We also setup Hadoop based video analysis (pattern recog-

nition) framework to process video stream data from 24 camer-

as (1280×720 resolution, 5fps). Details of our system proto-

type and configuration are discussed in Sections 4 and 5.   

 In both cases, processing data locally is much more cost-

effective. Figure 3-(a) extrapolates the total computing cost 

(CapEx + OpEx) based on our real system prototype (detailed 

in Section 4). The satellite dish receiver costs about $11.5K and 

the service cost is $30K per month [45] or $0.14 per MB [20]. 

The hardware cost for cellular service is about $1K [46] and the 

service fee is $10 per GB [47]. The transmission cost can be 

several orders of magnitude larger than the cost of building our 

in-situ system prototype (even when redundancy is deployed). 

In contrast to transferring all the data to remote data center via 

satellite, in-situ system can reduce over 55% operating cost if 

using satellite as backup communication method and 95% if 

using cellular service. It allows users to save over a million 

dollars in 5 years.  
Onsite Generator Energy-related CapEx  Energy-related OpEx 

Diesel Generator 
$370 per kW 

 lifetime 5 yr 

$0.4/kWh (diesel fuel price 
is $4/gallon) 

Fuel Cells 
$5/W, FC stack life 5yr; 
full system life 10yr 

$0.16/kWh (natural gas is 
$14 per cubic ft.) 

Solar + Battery 
battery life 4 yr, 2$/Ah; 

solar panel 2$/W 
N/A 

Table 1: Parameters used in energy cost evaluation [48-53] 

 

2.2 Standalone System and Energy Buffering 

 Whereas cloud data centers are grid-connected (mostly 

dual utility feeds), in-situ servers demand different power pro-

visioning scheme. This is mainly because many data acquisition 

sites are temporary or difficult to reach - they lack established 

utility infrastructure. Thus, standalone power supplies such as 

solar/wind system (with commodity batteries as energy buffer) 

are often more suitable for data processing in field. They can 

provide eco-friendly energy without the fuel delivery needs like 

diesel generators or fuel cells do. Such green energy powered 

standalone systems are also economical. As shown in Figure 3-

(b), fuel cell is still an expensive choice right now due to its 

relatively high initial CapEx. Although diesel generators have 

low CapEx and OpEx, they are not designed for supplying con-

tinuous power and often incur lifetime problems. The main 

OpEx of standalone solar system is the depreciation cost of 

energy storage (i.e., batteries). In this work our proposed power 

management scheme can actually extend their life.  

    
(a) IT-related TCO (b) energy-related TCO (a) individual vs. batch charging (b) high load vs. low load 
Figure 3: Cost benefits of deploying standalone InS Figure 4: Key properties of the energy buffer in standalone InS 
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 In off-grid situations, green energy buffers (e-Buffer) play a 

crucial role in maintaining high efficiency. During charging, for 

example, concentrating the limited green power budget on few-

er batteries is often beneficial. This is because the charge ac-

ceptance rate of a near-empty battery is often much higher than 

a battery that is close to a full charge [54]. In Figure 4-(a), our 

real measurement shows that charging each battery unit one by 

one could reduce total charge time by nearly 50% compared to 

batch charging (i.e., charging all batteries simultaneously). In 

addition, during discharging, batteries incur super-fast capacity 

drop at high current. However, this temporary capacity loss can 

be recovered to a great extent during periods of very low power 

demand (known as “recovery effect” [55]), as shown in Figure 

4-(b). Without careful management, the battery voltage drop 

can trigger emergency handling control and result in service 

disruption. Moreover, the aggregated electric charges (Ah) that 

flow through the e-Buffer is almost constant for a given battery 

unit before it wears out. This has been verified in extensive test 

on lead-acid batteries that undergo different charge/discharge 

regimes [56]. Therefore, one should also carefully balance the 

usage of the electric charge stored in every battery unit. 

2.3 The Necessity for Cross-Layer Coordination  

 When in-situ workloads meet standalone power sources, it 

is the compute node and energy buffer that link them together. 

Therefore, it is crucial to judiciously manage both compute 

node and energy buffers. In fact, this can be very challenging.  

 First, the intermittent batch job and continuous data 

stream require different power management policies. Changing 

the number of VMs assigned to each job or adding other com-

puting resources during job execution are difficult and in many 

cases impossible. In contrast, it is fairly easy to adjust the VM 

configuration during the period between two short time win-

dows of the video streams. For some long-running batch jobs, 

increasing VM instances may not help improve productivity; on 

the contrary, our results show that it can degrade throughput by 

15%, as shown in Table 2. The main reason is that the high 

server power demand can trigger increased number of check-

points, causing undesirable service interruption (about 15 

minutes for each server On/Off power cycle). In contrast, for 

video stream analysis workloads, a conservative system config-

uration (i.e., reduced VM instances) may not be wise. As 

shown in Table 3, reducing the number of active VM instances 

from 8 to 2 can reduce the data throughput by 66% and increase 

the service delay from zero to 1.5 minute per job.  

 In addition, conventional unified energy buffer lacks the 

ability to manage the energy flow from standalone systems to 

InS for two reasons. First, it has to be operated in either charg-

ing or discharging mode. The entire battery unit has to be dis-

connected from the load once its terminal voltage is below cer-

tain threshold for charging (or system protection reasons [55]). 

In this case InS has to be shut down and its solar energy utiliza-

tion drops to zero. Figure 5 demonstrate this phenomenon on 

our prototype. Second, due to the very limited power budget in 

the in-situ environment, a unified energy buffer sometimes 

cannot receive the highest charging rate even if all the available 

solar power budget is used to charge the battery. Consequently, 

offline in-situ servers may incur extended waiting time.  

3. Sustainable In-Situ Power Management 

  The unique operating environment of in-situ standalone 

servers requires a new, supply-load cooperative power man-

agement approach. In this work we propose InSURE, in-situ 

server systems using renewable energy (as the primary power 

source). The main goal of our design is to maintain highly pro-

ductive data pre-processing and overcome the significant effi-

ciency bottleneck caused by energy buffers. To achieve this, 

InSURE exploits two novel power management approaches:  

1) Reconfigurable distributed energy storage 

We synergistically integrate a power switch network with 

distributed battery architecture. It allows the energy buffer 

to be operated in hybrid modes and adjust its size. 

2) Joint spatio-temporal power management 

This technique jointly optimizes the efficiency of energy 

delivering 1) from standalone power supply to energy 

buffer and 2) from the energy buffer to compute servers.  

3.1 System Overview 

Figure 6 depicts the full system architecture of InSURE. A 

remarkable feature of InSURE is that it has built-in battery 

array that allows us to freely map a fraction of the stored green 

energy to servers. We leverage Facebook’s external energy 

Compute 
Capability 

Avg. Pwr. 

(watts) 
Availability 

Throughput 

(GB/hour) 

8VM (High) 1397 57% 14.0 

4VM (Low) 696 100% (Better) 16.5 

Table 2: Data throughput of seismic data analysis 
with the same energy budget (2kWh)   

 

Compute 
Capability 

Avg. Pwr. 

(watts) 

Delay 

(minute) 

Throughput 

(GB/hour) 

8VM (High) 1411 0 (Better) 0.21 

6VM 1050 0.25 0.17 

4VM  686 0.5 0.10 

2VM (Low) 335 1.5 0.07 

Table 3: Data throughput of Hadoop video analysis 
with the same energy budget (2kWh)   
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Figure 5: Snapshot of a 2-hour traces for seismic analysis 
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Figure 6: Schematic diagram of InS with adaptive energy buffer 
and smart node allocator. Although we focus on stand-alone 
system, it also supports a secondary power (if available). 
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storage architecture [57] and extend it by adding distributed 

power switches. This idea is partially enlightened by the recon-

figurable battery design in the power system community [58]. 

As a result, InSURE can reconfigure the size of its energy buff-

er to optimize the energy flow from supply to load. 

The major tuning knobs of our energy buffer are a set of 

switches managed by a PLC module. In Figure 6, three power 

switches (P1, P2, and P3) are used to manage the battery cabi-

nets to provide different voltage outputs and ampere-hour rat-

ings to servers. For example, if P1 and P3 are closed while P2 

is open, the batteries are connected in parallel. If switches P1 

and P3 are open while P2 is closed, the batteries are connected 

in serial. The PLC uses sensors (S1) to monitor the runtime 

status of each battery cabinet. It further communicates with the 

VM allocator to enable power-aware load matching. 

In Figure 6, the in-situ servers and on-site power systems 

can actually be placed into a modular container. Some major 

components, such as the server rack, battery cabinet, and re-

newable power generator are all standardized and highly modu-

lar. As a result, the design complexity and maintenance cost is 

relatively low. If any of the above components requires re-

placement, the construction lead time is also very short.  

3.2 Operating Mode  

InSURE supports a variety of operating modes, as shown 

in Figure 7. Based on the state of the energy buffer, we catego-

rize them into four types: Offline, Charging, Standby, and Dis-

charging. In the Offline mode, batteries are disconnected from 

the server load for system protection purposes. In the Charging 

mode, onsite renewable power, if available, is used for charging 

batteries with the best achievable efficiency. Our design brings 

batteries online when they are charged to a pre-determined ca-

pacity (90%). In the Standby and Discharging modes, we use 

renewable energy (directly generated from onsite green genera-

tor or energy stored in the buffer) to power server clusters.  

The transition between various operating modes is shown 

in Figure 8. Different battery units of InSURE’s e-Buffer can 

be operated at different modes. They can adapt their operating 

modes to various scenarios based on the stored energy budget, 

server power demand, and battery health conditions.  

3.3 Spatial Management 

The spatial power management scheme (SPM) fine-tunes 

the renewable energy harvesting (i.e., charging) process for in-

situ server systems. It accelerates energy buffering and balances 

the usage of different battery cells to reduce wear-and-tear. 

Other than treats all the battery units as a unified energy 

buffer, SPM focuses on selecting an optimal subset of the bat-

tery unit pool with a two-step control. First, the system selects 

battery units from the current energy storage pool based on the 

history usage record of each battery unit. Afterwards, it deter-

mines the optimal number of battery units for charging based 

on the available renewable power budget.  

During runtime, InSURE maintains a battery discharge 

history table and monitors the state-of-charge (SoC) of each 

battery unit, as shown in Figure 9. At each time stamp T, the 

energy manger calculates a discharge threshold δD, which spec-

ifies the upper bound of the aggregated total discharge. Assum-

ing that the lifetime discharge is DL, the unused discharge 

budget in the last control period is DU, and the desired battery 

lifetime is TL, the discharge threshold is given by Eq-1. 

d U L
L

TD D
T

               (Eq-1) 

We use the above threshold as the default criterion for de-

termining whether a battery unit is over-used. Batteries are put 

into offline group if their aggregated discharge is greater than 

the threshold value. After the first screening, we obtain a group 

of battery that can be used in the incoming cycle. 

In the second step, our system calculates the charging rate 

based on the available renewable power budget, as shown in 

Figure 10. If renewable power is inadequate, our system will 

reduce the number of battery units in the following round of 

batch charging. By concentrating the precious renewable power 

to fewer battery units, we could maintain a near-optimal charge 

rate in different renewable power generation levels. Once all 

the selected batteries are charged to a pre-determined level, 

they will be connected to the server cluster. In the Standby 

mode, batteries receive float charging. 
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Figure 7: The various energy flow scenarios for InSURE 

 

Spatial Management

Offline

Standby

Charging Discharging

Temporal Management

1
5

2 3

4

6

7

1: Both battery and green power are available

2: All selected battery meet their capacity goals

3: Green power budget becomes inadequate

4: State of charge (SoC) drops below threshold

5: A batch of batteries meet their capacity goals

6: Green power output becomes unavailable

7: Green power output > server power demand

 
Figure 8: Operating mode transition of InSURE energy buffer  
 

Requires: The usage statistics AhT[i] of each battery unit i, designated total 
discharge DL, desired lifetime TL, and previously unused budget DU 
 

1: 
2: 

3: 

4: 

For each beginning of a coarse-grained control interval T 
       Update the upper limit of  battery discharge  δD= DU +DL∙T/TL 

For each battery cabinet i in the offline group 

        Move i into charging group If AhT[i] < δD 

Figure 9: Spatial management scheme in the Offline mode. The 
goal is to avoid aggressive discharge and balance discharge. 

 

Requires: The estimated green power budget PG in the following battery 

charging period; the peak charging power PPC 
 

1: 

2: 
3: 

4: 

5: 
6: 

7: 

Calculate the optimal number for batch charging N = PG/PPC 

While charging group has uncharged battery cabinets 
        Select a batch of up to N cabinets CN from charging group 

        While current CN capacity < 90% of its nominal capacity 

                Continue charging 
        Mark all batteries in BN as charged 

Move battery cabinets from charging group to standby group 

Figure 10: Spatial management scheme in the Charging mode. 
The goal is to adapt the energy buffer size to renewable power 
budget to achieve fast-charging.  
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The SPM also offers the flexibility to temporarily trades 

off battery lifetime for better data processing throughput. It 

may gradually increase the battery discharge threshold instead 

of using a rigid value. If we use a fixed discharge threshold as 

calculated in Eq-1, it is possible that only a small number of 

batteries can be selected during a long period of high server 

power demand or low renewable power generation. By adding 

additional battery units to the already selected battery set, we 

can provide on-demand processing acceleration for a short pe-

riod of time without significantly affecting battery life. 

3.4 Temporal Management 

 To achieve continuous productivity, one needs to make the 

best use of the stored renewable energy. High-current discharg-

ing drains the battery quickly, but resulting in very limited en-

ergy delivery. Appropriate load power capping allows us to 

maintain a favorable amount of usable (online) battery units 

and avoids service disruption caused by data inrush. We use a 

temporal power management (TPM) scheme to improve the 

discharging effectiveness of batteries. The main idea is to allow 

the battery to partially recover its capacity during discharging 

period by reducing power demand. As shown in Figure 11, our 

system checks the server load level and the discharging current 

of online battery units at the beginning of each control period. 

If the discharge current is larger than a predefined threshold, 

our system will notify the server rack to cap power. For batch 

jobs, it will receive a duty cycle that specifies the percentage of 

time a server rack is allowed to run at full speed. Then the OS 

can use dynamic voltage and frequency scaling (DVFS) to ad-

just server speed based on the duty cycle. For data stream 

workloads that can be split into multiple small jobs, our system 

adjusts the number of VMs assigned to each job. In the mean-

time, InSURE also monitors the state-of-charge (SOC) of bat-

tery. When the battery units indicate low energy reserve, our 

system can temporarily shut down servers (VM states saved).  

 It is worth pointing out that the novelty of InSURE is not 

“distributed battery”, but a new battery-aware energy flow 

management scheme for in-situ systems. Prior data center bat-

tery designs are only optimized under loose power budget con-

straints (i.e., with continuous utility power as backup) and does 

not consider the power variability in in-situ environment. 

4. System Implementation 

 We have implemented InSURE as a three-tier hierarchical 

system, as shown in Figure 12. Its main functionalities are 

achieved through three modules built from scratch: (1) a recon-

figurable battery array, (2) a real-time monitoring module, and 

(3) a supply-load power management node. 

 Figure 13 shows our full-system prototype of InSURE. We 

deploy four HP ProLiant rack-mounted servers (dual Xeon 

3.2GHz processors with 16G RAM and 500G SAS HDD). The 

peak power demand of each server is around 450W and the idle 

power is about 280W. Table 4 summarizes the technical data of 

several major hardware components used in our system. 
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Figure 11: Flow chart of InSURE temporal power management Figure 12: The structure of our verification platform 
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Full-Scale Prototype:

1: Solar Panel

2: Current Combiner

3: Solar Power Line

4: Solar Sockets

5: Network Switch

6: Server Nodes

7: KVM

8: Batt. Ctrl. Node

9: Pwr. Converter

10: Battery Cabinet

11: Battery Array

12: Relay Network

13: Current Sensor

14: Voltage Sensor

15: Siemens PLC

16: PLC extension

1 2 3 4

12

 

PROGRAMMABLE LOGIC CONTROLLER 

Siemens S7-200 CPU224 PLC control module, 6ES7-214-1AD23-0XB0 

PLC ANALOG INPUT MODULE 

Siemens S7-200 6ES7-231-0HC22-0XA0, with 4 way analog signals input 

NETWORK & COMMUNICATION INTERFACE 

Cisco SRW2024 Gigabit Switch and  Weintek MT8050i control panel 

RECONFIGURABLE BATTERY ARRAY 

Six UPG UB1280 12V 35AH batteries; Six IDEC RR2P 24VDC relays 

BATTERY SENSOR 

CR Magnetics CR5310 voltage transducer (In: 0-50V DC; Out: +/- 5V DC) 
HCS 20-10-AP-CL current transducer (In:+/-10A DC; Out: +/-4 V DC) 

SOLAR POWER SYSTEM 

Grape Solar PV panels. Total installed capacity 1.6KW 

Figure 13: A full-system implementation of InSURE design 
 

Table 4: Technical data of  major hardware components 
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Reconfigurable Battery Array 

Our customized battery system uses six 12V lead-acid bat-

teries and a relay network. We use six 10A/24V DC relays as 

the power switches for reconfiguring the battery array. Each 

battery is managed independently using a pair of two relays 

(charging and discharging switch). These relays provide satis-

factory mechanical life (10M cycles) and fast switching (25ms), 

and are ideal candidates for managing battery in our study.  

 We use a Siemens S7-200 CPU224 PLC module as the 

controller for our reconfigurable battery system. Its digital out-

put is connected to the relay network and can energize or de-

energize the coil of relay to perform battery switching.  

Real-Time System Monitoring 

The monitoring module detects the battery status and noti-

fies the system whenever the battery configuration profile 

changes. It also collects key parameters such as charging and 

discharging current and battery terminal voltage. 

To enable real-time monitoring, each battery in the system 

is equipped with a voltage transducer and a current transducer. 

Their outputs are further sampled by two analog input PLC 

extension modules that are coordinated by the central PLC. All 

the analog readings processed by the analog input module are 

stored in specific registers in the PLC.  

We use an external control panel to link the battery system 

and the coordination node. The control panel communicates 

with the coordination server node via Ethernet using the Mod-

bus TCP protocol [59], a widely used communication protocol 

for industrial electronic devices due to robustness and simplici-

ty. We design corresponding encoding/decoding components to 

handle the data communication in our system. 

Power and Load Coordination  

The top hierarchy of our design consists of a power and 

load coordination module. This module is implemented on a 

separate server node. It maintains runtime profiling data of the 

battery array and performs appropriate supply-load control. 

We have designed a power supply switching API and a 

server control API. The former API provides necessary com-

munication interface that allows the system to select its power 

source during runtime. The latter API is used to adjust server 

power demand through frequency scaling, server power state 

control, and virtual machine migration. 

Power Behavior Demonstration 

 As mentioned earlier, the crux of our system is to maintain 

smooth and efficient energy delivery from standalone power 

system to energy buffers (e-Buffer) and finally to in-situ servers. 

Figures 14 (a) and (b) illustrate the system power behaviors 

using our recorded battery voltage traces and relay status logs. 

 Figure 14-(a) illustrates how our design performs timely 

solar energy harvesting. Initially, batteries #1 and #2 are both 

fully charged (Standby mode), whereas battery #3 is in low 

state of charge (SOC). As solar energy generation decreases, 

batteries #1 and #2 enter Discharge mode, and consequently 

their SOCs become lower than battery #3. At the time when 

InSURE receives adequate solar power, our controller starts to 

charge the battery array based on two principles: 1) give priori-

ty to low-SOC batteries if there are multiple batteries that have 

enough discharge budget, and 2) concentrate solar energy on 

fewer batteries for fast charging. In Figure 14-(b), our system 

selects batteries #1 and #2 since they have lower SOC (indicat-

ed by their terminal voltage). Our system starts to charge bat-

tery #3 after charging batteries #1 and #2 successively.   

 Figure 14-(a) shows how our design manages the green 

energy flow from solar panel to e-Buffer with balanced battery 

usage. Initially, all three battery units are in Offline mode (dis-

charged). When there is additional solar energy budget, our 

system selects batteries that have low aggregated total usage 

(Ah) for charging. Once reaching a pre-defined state of charge, 

the selected batteries will be put into Standby mode. 

5. Experimental Methodology 

 We evaluate our design with both well-established micro 

benchmarks and real-world in-situ applications. Table 5 sum-

marizes the workloads used in our experiments.  

 Micro Benchmarks: We use micro benchmarks to evaluate 

the power management effectiveness. We choose three bench-

mark programs from PARSEC [60], two from Hibench [61], 

and one from CloudSuite [62]. They cover a variety of in-situ 

data processing scenarios. For example, the dedup kernel repre-

sents data deduplication, which is the mainstream method to 

compress data; vips and x264 are widely used image processing 

and video processing benchmarks; wordcount and bayesian are 

text-file processing programs (mimic the behaviors of log pro-

cessing and analysis); the graph is a data mining application 

that uses a Twitter dataset with 11 million user data as input. 

Each workload is executed iteratively in our experiment. 

 
(a) from solar panel to e-Buffer (fast charging) 

 

 
(b) from e-Buffer to InS (discharge balancing) 

Figure 14: Demonstration of InSURE power behavior 
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In-Situ Applications: We also designed two case studies 

using representative in-situ applications on our prototype: 1) 

seismic data analysis (velocity analysis on 3D reflection seis-

mic survey) widely used in the oil industry; and 2) video sur-

veillance analysis (pattern recognition based video processing) 

for today’s widespread surveillance cameras. The former work-

load is batch processing with a data rate of 114GB per job, two 

jobs a day. The latter is continuous data stream analysis based 

on videos generated from 24 cameras (0.21G/minute). 

 We host all workloads in virtual machines (VM) on Xen 

4.1.2 hypervisor. Each physical machine (PM) hosts 2 VMs. 

Normally the first PM is turned on at 8:30AM, and the fourth 

PM is turned on 11:30AM. Starting from 4:00PM the first PM 

needs to be turned off and all PMs are shut down usually after 

6:30PM. Our system automatically collects various log data and 

can initiate dynamic frequency scaling (DFS) on each PM. 

When solar power budget is inadequate, our system can further 

make checkpoint and all VM states are saved. 

 The time-varying nature of solar energy makes it difficult to 

compare different groups of experiments directly. Similar to 

[37], for micro benchmarks, we reproduce our experiments via 

collected real solar power traces and monitored workload 

runtime data. Note that we use this methodology only for com-

paring the optimization effectiveness of our spatio-temporal 

power management scheme with conventional designs.  

 As shown in Figure 15, we use two solar power traces that 

have different power variability patterns and average power 

generation levels. Our traces are collected from our roof-

mounted solar panels that use a maximum power point tracking 

system to maximize its generation. We use daytime solar power 

traces collected from 7:00AM to 8:00 PM. The average power 

budget is 1114W for the high solar generation trace and 427W 

for the low solar generation trace. We use the dynamic solar 

power budget traces to precisely control our battery charger, so 

that the stored energy and the consumed green energy reflects 

the actual solar power supply across multiple experiments.  

6. Results and Deployment Experiences 

 We start by analyzing the system behaviors of InSURE 

using real traces and system logs obtained from our prototype. 

We then evaluate our spatio-temporal power management 

scheme using micro-benchmarks. Finally we evaluate InSURE 

using real in-situ workloads and discuss its cost benefits. 

6.1 System Trace Analysis 

 To understand the power behavior of inSURE. We investi-

gate a typical system power trace collected from prototype, as 

shown in Figure 16-(a). We mark five typical regions (Regions 

A~D) that frequently appear in our everyday operation.  

 Our standalone in-situ system starts to charge a selected 

subset of batteries in the morning, as shown in Region-A. Dur-

ing this period, the battery voltage gradually increases until it 

reaches a preset value. Then the system enters standby mode.  

 Figure 16-(b) shows a zoomed view of a fraction of the 

system trace. As we can see, Region-B incurs a great deal of 

solar usage surges. This is because our system uses a Perturb 

and Observe (P&O) peak power tracking mechanism [63]. Our 

maximum power point tracker (MPPT) has built-in sensors that 

can identify if we have reached the optimal solar power output. 

To reach this point, the controller increases server load tenta-

tively. This is reflected as many green peaks in Region-B. 

 Region-C shows the temporal control of our system. In this 

region, the load power demand is significantly larger than the 

maximum solar budget, and battery is in discharging mode. 

When our system realizes that the discharge current is unsafe, it 

triggers power capping (VM check-pointing and server shut-

down in this case). As a result, the solar power demand of our 

in-situ system drops at the end of this region. 

 The Region-D is the most desirable region. Renewable 

power is adequate and system can harvest the maximum benefit 

from renewable energy powered data-preprocessing. In con-

trast, Region-E is an unfavorable region as severely fluctuating 

power budget can cause many supply-load power mismatches. 

Using peak power capping may solve this issue. 

6.2 System Log Analysis 

 We further investigate InSURE by looking at the detailed 

system logs. In Table 6 we show a few key values that we ex-

tracted from three pairs of day-long operation logs (two sunny 

days, two cloudy days, and two rainy days). Each pair of traces 

has the same total solar energy budgets and very similar power 

variability patterns. We experiment with two power manage-

ment schemes: 1) spatio-temporal optimization (Opt), and 2) 

aggressively using energy buffer (No-Opt). 

 Our results demonstrate a key trade-off in in-situ standalone 

server system design, i.e., the efficiency of the energy buffer 

can be improved at the expense of less renewable energy utili-

zation. As Table 6 shows, the effective energy usage does not 

equal to the overall load energy consumption. This is because 

VM checkpointing operations and the on/off power cycles of 

servers consume large amount of energy but stall data pro-

cessing progress. Since the optimized power management 

scheme (Opt) results in more VM operations and server on/off 

cycles, it yields lower effective energy usage, about 86% of a 

non-optimized scheme (No-Opt). 

 In fact, our spatio-temporal optimization trades off effective 

energy usage for good reasons. It improves the overall service 

life (the entire expected lifespan, typically 4 to 5 years for lead-

acid batteries) of the e-Buffer and the average stored energy 

level by avoiding aggressive battery usage. As Table 6 shows, 

the standard deviation of battery terminal voltage of a non-

optimized scheme is 12% higher than our design. 

Workload Input Size Description 
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dedup 672 M Data deduplication 

graph 1.3 G Graph analytics  

bayesian 2.4 G Hadoop benchmark 

wordcount 1.0 G Hadoop benchmark 

vips 2662x5500 pixels Image processing 

x264 30fps/640x360 pixels H.264 video encoding 
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p
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seismic 
analysis 

114G batch job; collect-
ed twice a day 

Geo surveying data from 
225 km^2 oil field 

video 
surveillance 

5fps/1280x720 pixels 
0.21G/min data rate 

surveillance video generat-
ed from 24 cameras  

Table 5: The evaluated benchmarks and in-situ workloads 
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Figure 15: Solar traces for evaluating micro benchmarks 
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 Table 7 compares the impacts of integrating heterogeneous 

servers in our InSURE platform. We evaluate three types of 

workload: data deduplication, video processing, and data analy-

sis application. An interesting observation is that, although 

emerging low-power servers (e.g. Intel Core i-7-2720 series) do 

not always guarantee the fastest immediate data processing 

speed, it contributes to significant energy efficiency improve-

ment on our InSURE platform. They show better performance 

per watt and incur fewer On/Off power cycles (less overhead). 

Consequently, by using low-power servers, InSURE can im-

prove data throughput by 5X~15X. In the future, we expect in-

situ systems will benefit from more energy proportional designs 

being adopted by commodity server vendors. 

 

 
Data 
Size 

Server Type 
Exe. 
Time 

Avg. 
Power 

Data Processed per Unit 
of Energy per Node 

  

dedup 2.6G 
Xeon 3.2G 97s 360W 277G/kWh 

Core i-7 48s 46W 4.4T/kWh 

x264 5.6M 
Xeon 3.2G 4.6s 350W 12.4G/kWh 

Core i-7 4.7s 42W 101.3G/kWh 

bayes 4.8G 
Xeon 3.2G 439s 356W 111G/kWh 

Core i-7 662s 42W 621G/kWh 

Table 7: Comparison of a legacy high performance server 
node to a state-of-the-art low-power server node  

6.3 Power Management Effectiveness 

We first evaluate the power management effectiveness of 

InSURE using various micro benchmarks. Our baseline is a 

solar-powered in-situ system without the proposed spatio-

temporal power management. Figures 17-19 show the results. 

Our results demonstrate that InSURE can significantly im-

prove the service availability of in-situ systems. Due to the 

optimized energy flow (from standalone systems to in-situ 

servers), InSURE shows 41% higher service availability under 

high solar generation. In Figure 17, when the solar energy gen-

eration is low, the improvement can reach 51%.  

InSURE also saves the precious renewable energy stored 

in the e-Buffer throughout its operation. We refer to the average 

energy level of our e-Buffer as energy availability. In Figure 18, 

our system shows 41% more energy availability compared to 

our baseline. This can greatly improve the emergency handling 

capability of in-situ systems. The improvement is mainly a 

result from fast battery charging and smart load allocation that 

eliminates quick e-Buffer capacity drop.  

We also expect a service life improvement of 21~24%, as 

shown in Figure 19. InSURE increases e-Buffer lifespan since 

it applies discharge capping and balancing across battery cabi-

nets. Note that our optimization is conservative as we allow 

InSURE to occasionally use more stored energy than the pre-

determined threshold. By setting a more restrictive budget, one 

can further extend battery lifetime but may incur slight perfor-

mance degradation. Exploring this tradeoff is our future work. 

6.4 Full System Evaluation 

 We compare InSURE to a baseline in-situ design that 

adopts the power management approach of today’s grid-

connected green data centers [37, 38]. While our baseline sys-

tem shaves peak power demand and tracks variable renewable 

energy, it can neither reconfigure its energy buffers nor adapt 

its nodes to the off-grid power supply. Figures 20 and 21 shows 

the results obtained from our prototype.  

 Overall, InSURE outperforms our baseline significantly 

(from 20% to over 60%) in terms of system uptime, data 

throughput, response time, energy availability, battery lifetime, 

and performance per Ah (defined as the total data processed per 

ampere-hour electricity flows through the e-Buffer). 

 A major observation is that the energy budget level could 

affect various optimization measurement metrics differently. In 

Figures 20 and 21, we broadly categorize these metrics into two 

types: service-related metrics and system-related metrics. The 

service-related metrics are more related with the user experi-

ences and the system-related metrics mainly evaluates the ener-

gy efficiency and resiliency of in-situ systems.  

 The optimization effectiveness of InSURE on server-related 

metrics becomes greater when the solar energy is lower. In 

other words, the benefit of our joint spatio-temporal power 

management actually increases when the standalone in-situ 

system becomes heavily energy-constrained. The main reason 

behind this is that the charging process of our baseline system 

 
(a) Full-day operation demonstration of InSURE (Top) (b) Fluctuating power budget in a zoomed view (Bottom) 

Figure 16: Solar power budget trace and battery state of charge (as indicated by voltage) collected using our monitors and sensors 

  
Load 

kWh Usage 
Effective 

kWh Usage 
Power 

Ctrl. Times 
On/Off 
Cycles 

VM Ctrl. 
Times 

Minimum 
Battery Volt. 

End of Day 
Voltage 

Battery 
Volt. σ 

Others in Common 

Sunny 
(7.9 kWh) 

Non-Opt. 6.7 kWh 6.4 kWh 12 8 8 23.6 25.2 1.05 
Operating duration =11 hours; 
VM mgmt. overhead = 5 min; 
Battery initial voltage = 25.4V; 
Battery max voltage=28.8 V; 
Server pwr. consumption= 350 W; 
Max total server number = 4; 

Opt. 6.5 kWh 5.9 kWh 47 16 42 23.7 25.5 0.93 

Cloudy 
(5.9 kWh) 

Non-Opt. 5.5 kWh 5.2 kWh 10 8 15 23.3 25.2 1.03 
Opt. 5.0 kWh 4.2 kWh 51 20 51 23.2 25.3 0.92 

Rainy 
(3.0 kWh) 

Non-Opt. 2.8 kWh 2.5 kWh 10 8 11 23.3 25.0 1.04 
Opt. 2.6 kWh 2.1 kWh 33 15 38 23.3 25.4 0.93 

Table 6: Statistics of several key variables collected from the log. We show three typical solar power generation scenarios 
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can be very lengthy when solar power budget is low. In addi-

tion, InSURE can reduce the significant energy overhead due to 

increased check points that are incurred by our baseline system.  

 When the solar energy is abundant, InSURE exhibits great-

er optimization results on system-related metrics. In fact, both 

InSURE and our baseline tend to deploy more compute in-

stances and increase its charge and discharge frequency when 

the solar panel output is high. Due to a lack of intelligent dis-

charge capping and balancing, the e-Buffer can be the major 

efficiency bottleneck of our baseline system. 

 The effectiveness of our temporal-spatial power manage-

ment on system-related metrics is largely orthogonal to work-

load types. We observe that most of the performance statistics 

of seismic data are very close to video surveillance. In contrast, 

the service related metrics are normally workload dependent.  

 Our results also imply that InSURE could maintain its op-

timization effectiveness for in-situ systems that intend to over-

subscribe their standalone power systems to reduce cost. In 

Figures 20 and 21, the height difference between the two bars 

(i.e., High Solar Generation and Low Solar Generation) is rela-

tively small – less than 15% on average. Even if we cut the 

solar power budget in half in the Low Solar Generation scenar-

io, it still shows very impressive overall improvement.  

6.5 Cost Benefits 

Although additional costs are added due to the inclusion of 

on-site renewable power supply, InSURE still provides compet-

itive cost effectiveness. Take our full-system prototype (1.6kW) 

as an example, the solar array and inverter only account for 8% 

of the total annual depreciation cost, as shown in Figure 22. 

The cost of our e-Buffer (210Ah) is approximately 9% of In-

SURE. However, if powered by diesel generator, the same in-

situ servers would require 20% additional equipment and fuel 

cost, not to mention that it increases the carbon footprint of in-

situ servers. For fuel-cell based InS, it can generate carbon-

neutral electricity with relatively cheaper fuels but the high 

capital cost of fuel cell stack has become the main design issue. 

Compared to InSURE, a fuel cell based InS can increase the 

cost by 24%. The maintenance cost is estimated to be 12% of 

InSURE. It is worth pointing out that the data transmission cost 

in rural areas can be several orders of magnitude larger than the 

cost of building InS. Adding hardware redundancy result in 

negligible cost increase but can further reduce maintenance cost. 

In addition, one can also leverage software fault-tolerant mech-

anisms to further reduce the maintenance cost.   

Another advantage of InSURE is that it can economically 

scale along with different data processing needs, allowing for 

wide deployment. In places that have lower solar energy re-

sources (e.g., indicated by sunshine fraction, the percentage of 

time when sunshine is recorded [64]), InSURE has decreased 

average throughput. In this case, one can scale out InSURE to 

meet the data processing demand. Although expending system 

capacity increases TCO, it is still much economical compared 

to sending unprocessed data to remote data centers. As shown 

in Figure 23, InSURE brings up to 60% cost savings. 

 The cost benefit of InSURE increases when local data gen-

eration rate increases. Figure 24 shows how the total cost of 

InSURE varies with data generation rate. There is a special 

point that the cost curve of InSURE interacts with cloud-based 

data processing. When the data generate rate is below this point 

(e.g., 0.9 GB/day for our prototype), our system exhibits higher 

operating cost compared to conventional cloud-based remote 

processing. If the data rate keeps increasing and researches 0.5 

TB per day, our system could yield up to 96% cost reduction 

due to significantly reduced data transmission overhead.  

 We finally evaluate the cost savings of deploying InSURE 

in different in-situ big data scenarios [65-74]. We consider five 

application scenarios that have different data rates and deploy-

ment lengths, as shown in Figure 25. For some long-running 

data acquisition sites, we also consider the hardware replace-

ment cost. Overall, InSURE provides an application-dependent 

cost saving rate ranging from 15% to 97%.  

 In-situ server clusters are complex systems and many other 

factors can affect their operating efficiency. For example, the 

intersection point in Figure 24 actually depends on the system 

capacity. Over-provisioning increases the TCO of InSURE and 

changes the position of the intersection point. Building efficient, 

cost-effective in-situ systems requires continued innovation in 

architecture and system design, which is our future work.  

7. Related Work 

Recent studies highlight various opportunities for building 

more powerful and efficient data centers, such as thermal con-

trol [75], deep sleep [76], peak power shaving [25], scale-out 

processors [77], market-driven system [78], hyperthread-aware 

power estimation [79], feedback control [80], and reconfigura-

ble systems [81]. While all of the prior arts focus on pushing 

the efficiency limits of today’s data center infrastructure, we 

instead explore the opportunity of offloading the ever-growing 

   
Figure 17: In-situ service availability Figure 18: E-Buffer energy availability Figure 19: Expected e-Buffer service life 

   
Figure 20: Results of in-situ batch job Figure 21: Results of in-situ data stream Figure 22: Annual depreciation cost 
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data processing burden to in-situ servers. The importance of 

developing such a new data-centric system that bridges the gap 

between computing capability and data growth has been recog-

nized in different ways [82-84]. 

In-Situ Computing: The concept of in-situ computing has 

been proposed in the HPC and system research community to 

solve the I/O overhead issue. Several studies propose perform-

ing data analysis while scientific applications producing data 

[22, 23, 85] or moving computation from compute node to stor-

age servers [86]. However, they only look at in-situ computing 

within the data center. They can neither solve the bulk data 

movement issue, nor address the grand power budget challenge 

faced by today’s data centers. Several networking research [41, 

87] also try to bring computation to the network edge near data 

sources. However, these proposals are limited to sensor nodes 

and network routers, lacking the necessary storage capacity and 

computing capability for handling massive amount of data. 

 Green Data Centers: Many recent work has explored data 

center powered by renewable energy [32-39, 88-91]. The most 

representative works are Parasol [37], Oasis [38], Blink [88], 

and Net-Zero [89]. However, our design differs from prior stud-

ies in both architecture and power management strategies. 

 Parasol. The Parasol project includes a group of system 

design [33, 37, 90]. Its prototype is a solar-powered micro-

data center backed by grid-tie and batteries. Its main fea-

ture is to smartly schedule deferrable jobs and select the 

source of energy to use. Our work distinguishes itself from 

Parasol in three aspects: (1) Parasol mainly focuses on data 

center level design, whereas InSURE looks at small-scale 

clusters deployed near the data. (2) The energy source se-

lection strategy of Parasol is not applicable for standalone 

in-situ servers that have no access to utility grid. (3) Para-

sol is mainly concerned with renewable power variability, 

while InSURE mainly focuses on the efficiency of energy 

delivery from standalone systems to in-situ nodes.  
 Oasis. The highlight of Oasis is that it exploits incremental 

green energy integration at the PDU level for scaling out 

server clusters. It focuses on adding server racks to exist-

ing data centers and therefore is expected to incur the same 

data movement problem as cloud data centers. In addition, 

similar to Parasol, Oasis is a grid-connected system that re-

lies on a controller to change power supplies. 
 Blink. Blink leverages fast power state switching to match 

server power demand to intermittent power budget. The 

proposed design mainly focuses on internet workloads and 

lacks the ability to optimize energy flow efficiency.  

 Net-Zero. Net-Zero is a solar energy powered server rack 

that matches load energy consumption to renewable energy 

generation to achieve carbon-neutral computing. It also re-

lies on net-metering (a grid-dependent power synchroniza-

tion mechanism) and cannot be used on in-situ systems. 

 Energy Storage Management: Batteries have attracted 

considerable attentions recently due to their importance in both 

small mobile systems [92] and large data centers [36, 25, 26, 

93-95]. In contrast to prior energy storage systems designed for 

emergency handling purpose (rarely used) and peak shaving 

purpose (occasionally used), batteries used for standalone InS 

often incur cyclic usage, i.e., they are discharged in a much 

more frequent and irregular manner. In addition, prior studies 

overlooked several critical battery properties, resulting in sub-

optimal tradeoffs for in-situ systems. In [96], the authors inves-

tigate a dynamic control scheme for distributed batteries, but it 

does not consider renewable energy and in-situ environment. 

8. Conclusions 

 In this study we explore pre-processing of data generated in 

the field. Specifically, we find that in-situ standalone server 

system that is powered by renewable energy and backed by 

green energy buffers is especially promising. We show that 

efficient energy flow from standalone power supplies to energy 

buffer and finally to compute nodes is the crux of designing 

such an in-situ computing facility. This paper, for the first time, 

demonstrates the full-system implementation and a novel power 

management scheme for in-situ standalone server systems. Our 

system can bring 20~60% performance improvements in terms 

of system uptime, data throughput, energy availability, and 

battery lifetime. We believe in-situ systems provide a technical-

ly and economically viable way of tackling the incoming data 

explosion challenge. It will essentially open a door for a new 

class of sustainable computing in a world of ubiquitous data.  
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