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Abstract 

Today, an increasing number of applications and ser­
vices are being hosted by large-scale data centers. The mas­
sive and irregular load surges challenge data center power 
infrastructures. As a result, power mismatching between 
supply and demand has emerged as a crucial issue in mod­
ern data centers which are either under-provisioned or 
powered by intermittent power sources, Recent proposals 
have employed energy storage devices such as the uninter­
ruptible power supply (UPS) systems to address this issue, 
However, current approaches lack the capacity of efficiently 
handling the irregular and unpredictable power mismatches. 

In this paper, we propose Hybrid Energy Buffering 
(HEB), the first heterogeneous and adaptive strategy that 
incorporates super-capacitors (SCs) into existing data cen­
ters to dynamically deal with power mismatches. Our tech­
niques exploit diverse energy absorbing characteristics and 
intelligent load assignment policies to provide efficiency­
and scenario- aware power mismatch management. More 
attractively, our management schemes make the costly en­
ergy storage devices more affordable and economical for 
datacenter-scale usage. We evaluate the HEB design with a 
real system prototype. Compared with a homogenous bat­
tery energy buffering system, HEB could improve energy 
efficiency by 39.7%, extend UPS lifetime by 4.7X, reduce 
system downtime by 4f% and improve renewable energy 
utilization by 8f.2%' Our TCO analysis shows that HEB 
manifests high ROI and is able to gain more than J.9X peak 
shaving benefit during an 8-years period. It allows datacen­
ters to adapt to various power supply anomalies, thereby 
improving operational efficiency, resiliency and economy. 
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1. Introduction 

It is predicted that the power consumption of world data 
centers alone will approach 1,000TWh within a decade 
(2013-2025), which is more than the total now used for all 
purposes by Japan and Germany combined [1]. The huge 
power demands not only imply significant electricity cost 
but also lead to tremendous carbon emission. 

Driven by the enonnous amount of power cost and en­
vironmental concern, industry and academia alike are focus­
ing more on the new perspectives of improving data center 
power infrastructures. Currently, there are two primary 
techniques: (1) aggressively under-provisioned datacenter 
power infrastructures (a.k.a., power under-provisioned data 
centers), which has been proved as a meaningful methodol­
ogy to dramatically reduce infrastructure capital expenses 
(CAP-EX) and monthly recurring operating expenses (OP­
EX) [2-8], and (2) renewable energy integration into data 
center facilities. To effectively reduce carbon emission, not 
only academia has started to study the intermittent energy 
power management schemes [9-18], but also many IT com­
panies (Microsoft, IBM, Apple, Google, HP, etc.) have be­
gun to build renewable energy data centers [19-23]. 

Although the above two power provisioning schemes 
can significantly reduce electricity cost and carbon emission, 
we notice that power mismatches are more prone to occur 
since (1) power under-provisioned data centers intentionally 
subscribe lower power supply infrastructures, which may 
lead to power budget violations due to the irregular and 
bursty service requests, and (2) the nature of renewable 
power sources is intennittent and fluctuated, and it may ex­
ceed (i.e. valley power) or lower (i.e. peak power) than 
power demands even if the latter are stable. 

Existing proposals to handle the power mismatching is­
sue can be classified into two categories: (1) perfonnance 
scaling techniques on the power demand side, and (2) e�er­
gy sources tuning mechanisms on the power supply SIde. 
Among those, the performance scaling techniques primarily 
leverage server power state tuning (e.g., DVFS and ACPI 
techniques [24-27]) and workload scheduling to accommo­
date runtime power budget or track the time-vary renewable 
energy budget [11, 14-16,28]. These approaches can force­
fully cap power mismatches at the cost of perfonnance deg-



radation. Recently, a new tuning knob on the power supply 
side, the energy storage devices (e.g., UPS batteries), is re­
purposed to shave peak power mismatching [6, 8, 29-33]. 
Compared with performance scaling schemes, this technique 
can effectively mitigate performance penalty. 

When used to address the power mismatching issue, ex­
isting UPS batteries manifest several disadvantages: (1) 
batteries have limited lifetime cycle (approximate 2000 to 
3000 cycles [34]). Frequent charging/discharging can lead 
to a much shorter lifetime [35]; (2) large discharge current 
may lead to less usable capacity (known as the Peukert's 
law effect) [36]; and (3) to avoid battery overheating during 
charging, batteries cannot be re-charged very fast with large 
charging current. In addition, the low energy efficiency is 
another major drawback of batteries - the round trip energy 
loss of batteries can reach to 15%-20% [37]. Therefore, can 
we find a new way to gracefully handle the power mis­
matching on the power supply side while avoiding these 

limitations of batteries? 
In this paper, we propose a different power provision­

ing scheme - HEB, which explores the benefits of incorpo­
rating hybrid energy buffering technologies into data centers 
to intelligently and economically handle power mismatching. 
Specifically, we integrate super-capacitors (a.k.a., ultra­
capacitors) with conventional UPS systems to provide an 
additional layer of safety in the event of unexpected power 
mismatches. Super-capacitors (SCs) have emerged as a 
promising alternative to batteries [38]. They have the fol­
lowing advantages: (1) high efficiency and low round-trip 
energy loss, (2) allowing fast charging and discharging with 
a high current, and (3) two to three orders of magnitude 
more life cycles than batteries [37, 38]. However, currently 
SCs are still too expensive for the large-scale, exclusive 
deployment in data centers. As a result, the heterogeneous 
energy buffering systems, which combine batteries and SCs, 
provide a more feasible and attractive solution. 

When transmitting from homogeneous to heterogene­
ous energy storage technologies, challenges arise as the lat­
ter requires more intelligent power management schemes 
between the two types of energy buffers to achieve efficien­
cy and economy: (1) for a given peak power mismatching 
scenario, there exists an optimal schedule of discharging 
that could provide the longest discharging duration. Note 
that the optimal discharging point often shifts as the availa­
ble stored energy changes in either batteries or SCs, and (2) 
for a given valley power charging opportunity, the energy 
buffers should be rapidly charged so that they can supply 
enough energy prior to the following peak power mismatch­
ing. What is more, from the perspective of energy efficiency, 
the ideal usage pattern of heterogeneous energy buffers also 
depends on power mismatching scenarios. For instance, 
when the power peaks are small and narrow, it is better to 
exclusively use SCs to provide power shortfall since SCs 
can be easily charged within a short duration while suffering 
negligible round-trip energy loss. In sum, we need an emer­
gency-aware and workload-aware power management strat-
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egy, which can effectively coordinate the utilization of het­
erogeneous energy buffers and intelligently assign load 
power demands to hybrid energy buffers. 

This paper makes the following contributions: 
• We explore super-capacitors (SCs) as a new tuning 

knob on the data center power supply side to handle the 
irregular power mismatches. By comparing the amor­
tized cost, life cycle, charging/discharging rate, and en­
ergy efficiency between SCs and batteries, we demon­
strate the design feasibility of combining SCs as hybrid 
energy storage buffering in data centers. 

• We present HEB, a novel, heterogeneous energy buffer­
ing based power provisioning architecture that enables 
data centers to effectively and economically incorporate 
batteries and SCs to handle power mismatching. The 
architecture of HEB is based on distributed and recon­
figurable energy storage scheme which is easy to scale 
out and configure. 

• We propose a tailored power management framework, 
which can intelligently assign different ratio of the 
server loads to appropriate energy buffers to achieve 
high energy efficiency and low performance degrada­
tion during power mismatching events. The power 
management framework can auto-tune the load assign­
ment and self-optimize its assignment performance. 

• We implement a scale down version of HEB as a proto­
type research platform and our real-system based ex­
periments show that HEB could improve energy effi­
ciency by 39.7%, extend UPS lifetime by 4.7X, reduce 
server downtime by 41 %, and improve renewable ener­
gy utilization by 81.2%. HEB also manifests high CAP­
EX, ROI and is able to gain more than 1.9X peak shav­
ing benefit during an 8-years period. 
The rest of this paper is organized as follows. Section 2 

provides the background and motivation of handling power 
mismatching. Section 3 characterizes the heterogeneous 
energy buffers and highlights the key design considerations. 
Section 4 presents our heterogeneous power provisioning 
architecture and compares it with conventional design. Sec­
tion 5 proposes the power management policies for HEB. 
Section 6 describes our prototype and experimental method­
ology. Section 7 presents the evaluation results with our 
prototype system and TCO analysis. Section 8 discusses 
related work. Finally, Section 9 concludes this paper. 

2. Background and Motivation 

To mitigate power cost and carbon emission, both un­
der-provisioned and renewable energy powered data centers 
have attracted growing attentions in recently years. In this 
Section, we first introduce the two emerging power provi­
sioning schemes. Then, we discuss the power mismatching 
issues in the two data centers. 

2.1 Power Under-Provisioned Data Centers 

Conventional data center power infrastructures are 
commonly over-provisioned based on the nameplate rating 



power of all the servers, but this incurs significant power 
overhead and low power infrastructure utilization [2]. 
Therefore, many data centers today start to under-provision 
power infrastructures [2-8]. To detail the benefits and disad­
vantages of the schemes, we analyze the different power 
provisioning rates based on a Google cluster workload trace 
[2, 32], as shown in Figure l(a). We assume four different 
power provision rates (P1-P4). Among those, PI is an over­
provisioning scheme and can cover all peak demands. P4 is 
an under-provisioning scheme and only supplies 40% power 
budget for the data center loads. We defme the maximum 
power provlsLOning utilization (MPPU) as: 
MPPU = It l'i.T (It is the total time, during which pow­

er demands reach the provisioned budget and IT is the 

total load running time). 
Figure l(a) shows that aggressively under-provisioning 

power infrastructure can yield high MPPU and low infra­
structure capital cost (capital cost is proportional to the pro­
visioned IT power facility, estimated as $10-20 per Watt [3, 
6, 8]). Nevertheless, the under-provisioning power infra­
structure incurs more power mismatching, which degrade 
load performance if they are forcedly capped. Therefore, to 
reduce power related CAP-EX and to improve MPPU while 
avoiding performance degradation; the power mismatching 
caused by under-provisioned power infrastructure should be 
gracefully handled. 

2.2 Renewable Energy Powered Data Centers 

Provisioning clean renewable energy into data centers 
can alleviate their carbon emission. However, due to its in­
trinsic fluctuation, intermittent power mismatching is one of 
the greatest challenges for integrating renewable energy. 
Recent proposals leverage load deferment and load schedul­
ing [9-12] to match demand to the supply, which may vio­
late the service level agreement (SLA) and are not suitable 
for performance oriented data centers. Another approach is 
to utilize large-scale battery farms to regulate the power 
mismatches for performance consideration. 

As shown in Figure l(b), during the peak power, the 
load can draw additional energy from batteries, and during 
the valley power, the surplus renewable energy can recharge 
batteries. Since the renewable energy generation is time­
varying, it is critical for batteries to make the most of the 
opportunities of each power valley to store more energy. 
Therefore, the renewable energy utilization (REU) is a cru­
cial consideration to maximally utilize the green energy for 
power mismatches handling. The REU can be defined as 

REU = (IBRE + ILRE)/ISRE, where IBRE is the renew-

able energy stored in batteries, ILRE is the renewable ener­

gy for load and IS'IE is the total amount of renewable en­

ergy generation. However, typically batteries have the up­
per bound of charging current and cannot timely absorb all 
the renewable energy during the very deep power valleys, 
which wastes renewable energy and leads to low REU. Con-
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sequently, we need alternative energy storages without the 
limitation of upper-bound charging current, which can take 
advantage of the deep valley power mismatching opportuni­
ties to maximally absorb intermittent power in renewable 
energy powered data centers. 

3. Hybrid Energy Buffers: Characterization 

and Key Design Concerns 

In this section, we characterize different energy storage 
devices and discuss the design concerns and opportunities 
on leveraging hybrid energy buffers in data centers. 

3.1 Characterization 

We first build up an energy storage characterization 
test-bed which consists a group of super-capacitor modules 
(Maxwell 16V, 600F [39]) and LA-batteries (l2V, 4AH), as 
shown in Figure 2. Our experimental test-bed allows us to 
charge and discharge SCs and batteries alone for character­
izing their behavior. In addition, we can jointly utilize SCs 
and batteries to power server loads. 

Energy Efficiency Analysis: One of the primary rea­
sons for using SCs to buffer energy is that they incur negli­
gible round-trip energy loss [37]. Our experimental meas­
urements indicate that SCs can achieve 90%-95% round-trip 
energy efficiency, as shown in Figure 3. In contrast, lead­
acid batteries have less than 80% efficiency even in the best 
case in our experiments. The energy efficiency calculation is 
based on detailed charging/discharging logs of our system 
with different server power demands. 

In fact, the efficiency of batteries can be even worse, 
depending on their usage patterns. There is a so-called re­
covery effect: batteries cannot release all of their stored en­
ergy in a one-time, high-current discharging - part of the 
stored energy seems to be "lost"; during periods of no or 
very low discharge, they can recover the energy "lost" to a 
certain extent [40]. Figure 3 shows our characterization of 
different discharging scenarios with one, two and four serv­
ers, which reflect different power demands and battery dis-
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charging currents. The one-time discharging efficiency of 
the lead-acid battery decreases as we add more servers (i.e. 
increase the power demand). Given additional discharge 
cycles and enough recovery time, the battery efficiency can 
increase significantly (i.e. by 6%�24%). However, this does 
not mean that one should always cap load power demand 
and wait for the battery to recover. This is because the ener­
gy waste due to server on/off cycles can be significant (i.e. 
account for nearly half of the recovered energy), as shown 
in Figure 3. Therefore, in order to improve energy efficiency, 
it is wise to use SCs to deal with power mismatching. 

Cost Analysis: SCs commonly have much longer life 
cycle. They can sustain hundreds of thousands charg­
ing/discharging cycles without degradation. Consequently, 
the amortized cost of SCs to each charging and discharging 
cycle ($/KWh/cycle) is competitive. As shown in Figure 4, 
the initial cost of most UPS batteries is about 100-300 
$!KWh, while for SCs it is about IOK-30K $!KWh [34,37, 
38]. However, the amortized cost of SCs is very close to 
NiCd and Li-ion batteries (about 0.4 $/KWh per cycle) and 
is higher than lead-acid batteries. In sum, SCs have high 
initial capital cost but very competitive amortized cost. Note 
that the technology improvement of SC is much faster than 
that of the lead-acid battery, which makes the cost gap be­
tween SC and battery smaller in the future [41]. On the oth­
er hand, from the perspective of availability, it would be 
worthwhile to deploy efficient energy storage buffers in data 
centers to avoid the even more expensive service downtime, 
which has reached to $100,000 per hour on average in 2010 
and increased by 38% between 2010 and 2012 [42]. 

Charging and Discharging Comparison: Batteries and 
SCs manifest completely different charging/discharging 
features as battery stores energy electrochemically while 
there is no chemical reaction in SCs. SCs can be charged 
very fast without the limitation of upper-bound charging 
current, but neither does battery. We compare different dis­
charging scenarios of batteries and SCs with different num­
bers of servers, as shown in Figure 5. Our results show that 
the SC discharging voltage shows linearly declining trend 
irrespective of power demands. However, batteries exhibit a 
sharp voltage drop in light of large power demands since the 
chemical reaction process in batteries is slow and cannot 
release more power with a short time period. When handling 
power mismatching, the large peak power demands may 
cause battery voltage to transiently drop, which poses se ri-
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ous threat to server uptime. Therefore, it is important to 
avert using batteries to handle the large peak power mis­
matches. On the contrary, with the linear discharging prop­
erties, SCs are more stable and controllable for those scenar­
ios. 

3.2 Implications from Characterization 

Based on the characterization above, we can see that 
leveraging SCs can deliver the high current levels needed 
for dealing with large power mismatching while being re­
charged quickly between the events with high energy effi­
ciency. Nevertheless, this does not necessarily mean that 
one should only employ SC as its current cost is still high. It 
is crucial to use hybrid energy buffers for exploiting the 
merits of both while averting their shortcomings. 

We further perform experiments to explore how to 
jointly utilize SCs and batteries to power servers. We first 
vary the number of servers assigned to the batteries and SCs 
to measure the maximum server runtime with constant pow­
er demands. In the experiments, whenever one energy stor­
age device is depleted, the other will take over the entire 
load immediately via power switches. As Figure 6 shows, 
there is an optimal load assignment that can provide the 
longest discharging time. It is clear that one should not 
heavily rely on either SCs or batteries. For example, by as­
signing heavy load on SCs, the server cluster runtime (up­
time) can be decreased by 25% on average. Therefore, we 
should identify an optimal ratio to assign servers that pow­
ered by batteries or SCs for maximizing the server runtime. 

The challenge of such load power assignment is that 
there is not a fixed optimal operating point. The optimal 
server assignment actually depends on the current capacity 
of the heterogeneous energy buffers and the time-vary shape 
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of power peaks. Therefore, we should dynamically identify 
the optimal operation point to distribute appropriate loads 
between SCs and batteries upon a power mismatching event. 

4. System Architecture 

Many research efforts focus on optimizing power deliv­
ery topology to enhance data center efficiency. In this sec­
tion, we first analyze the pros and cons of leveraging current 
energy storage system to handle power mismatching. Then 
we present our heterogeneous power architecture in detail. 

4.1 Energy Storage System Architecture Analysis 

The centralized (Figure 7(a)) and distributed (Figure 
7(b)) topologies are two primary energy storage architec­
tures in data centers currently. In a centralized battery ener­
gy storage system, the UPS battery system locates on the 
critical path between the Automatic Transfer Switch (A TS) 
and the Power Distribution Units (PDU). When used to deal 
with the peak power mismatching (similar to [8]), it can 
only provide load shifting for the entire data center but can­
not handle the peak shaving in a fine-grained manner. 
Moreover, the centralized UPS system commonly works on­
line and always performs double converting (AC-DC-AC), 
which leads to 4-10% power losses [29]. It is also not easy 
to scale out in large data centers. 

At present, IT giants such as Google, Microsoft and Fa­
cebook have explored the distributed power topology (Fig­
ure 7(b)) in their data centers. For instance, Facebook em­
ploys a cabinet of batteries for every 6 racks, or a total of 
180 servers [43]. Their design is scalable in rack level and 
allows data centers to shave peak power by using a fraction 
of the installed batteries. To avoid power double converting, 
it needs customized servers that support DC power. Google 
mounts a battery in every server after Power Supply Unit 
(PSU) [44]. This design can completely avoid the battery 
double converting energy loss when shaving the peak power 
mismatching [29]. However, each server is assigned to a 
dedicated battery and multiple servers cannot share battery 
energy with each other to assist peak shaving. Furthermore, 
as the batteries are deployed in the inner chassis of servers, 
they are constrained by limited capacity. Note that both of 
the existing designs for data centers are exclusively based 
on the homogeneous batteries and inevitably suffer the 
drawbacks of battery. Figure 7(c) depicts our heterogeneous 
energy buffer topology, which provides opportunities to 
employ the pros and evade the cons of batteries and SCs 
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when handling the power mismatching. The power switch 
based control enables data centers to dynamically determine 
the distribution of server power demands between batteries 
and SCs. The batteries will offer bulk energy to the load 
since they can deliver large amount of energy slowly over a 
longer period of time while the SC pool will handle the 
transient peak power mismatching since they can be charged 
and discharged very quickly. The detailed architecture and 
hardware implementation scheme are presented as below. 

4.2 HEB Architecture 

Figure 8(a) illustrates an overview of our HEB power 
provisioning architecture. The renewable/utility power 
charges batteries and SCs when the load power demands are 
lower than the provisioned power budget. The HEB Con­
troller (hControl) is a key decision-making component that 
monitors and controls other components. The voltage & 
current of batteries and SCs collected from the sensors are 
transmitted to the hControl. The power switch states (i.e. 
ON/OFF) as well as all the server power demands infor­
mation (measured by the Intelligent Power Distribution Unit 
or IPDU) are transferred to the hControl too. With the above 
state feedbacks, the hControl makes operation decisions and 
sends the control signals to each power switch to distribute 
energy sources for each server. In our current implementa­
tion, the hControl is a low power server that hosts our het­
erogeneous power management algorithms, such as dynamic 
scheduler and optimizer (detailed in Section 5). 

Note that the hControl and heterogeneous energy buff­
ers can be deployed either at c1uster- or rack- level in data 
centers. Figure 8(b) illustrates the cluster-level deployment, 
which only uses one hControl and one group of heterogene­
ous energy buffers. In this case, the hControl controls all the 
servers. The DC/ AC converter is needed due to the long 
distance power delivery from the energy buffers to each 
server, which inevitably leads to energy conversion loss. 
Figure 8(c) shows the rack-level deployment, which consists 
of several hControls and multiple groups of heterogeneous 
energy buffers. This can avoid the DC/AC conversion as the 
DC power can be directly delivered from the energy buffers 
to each server. The disadvantage is that each group of ener­
gy buffers is independent and cannot share their energy. 

With both deployment strategies, the hControl can co­
ordinate available heterogeneous energy buffers and assign 
appropriate energy to servers within its domain based our 
heterogeneous power management framework. 
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5. Power Management Framework 

In this section, we present the heterogeneous power 
management framework for HEB, which primarily inte­
grates power mismatching prediction method, dynamic load 
assigning mechanism and heterogeneous energy buffer op­
timization strategy. The proposed power management 
framework allows the hybrid energy buffer system to effi­
ciently and economically handle the unregularly and unpre­
dictable power mismatching. 

5.1 Problem Formulation 

At the beginning of each control interval, HEB control­
ler obtains the current available capacity of batteries (MA) 
and SCs ( MC ) based on the feedback information from the 
sensors. We assume the power mismatching during the con­
trol interval is MM. We defme RA as the ratio of servers 

powered by SCs, therefore, the number of server powered 

by SCs is NumS* RA' where NumS is the total number of 

servers. Likewise, the number of server powered by batter­
ies is NumS * (1- RA) . The HEB controller assigns the en­

ergy buffer based on the above four variables (i.e. MA, 
MC , MM, and RA) to handle the peak power mismatch­

ing events, and it can calculate the energy efficiency (EE) 
and server downtime (SD) at the end of the control interval. 
We can formulate the peak power mismatching handling in 
HEB as following: 

(SD, EE) = IT (MA, MC, MM, RJ 
where EE is the overall efficiency of heterogeneous energy 
buffers. SD is the aggregated time that servers have to shut 
down as the stored energy is insufficient to shave the peaks. 
As the values of MA, MC and MM are not fixed during 
each power mismatching period, our power management 
goal is to minimize the SD and maximize the EE by adjust­
ing the ratio RA. We solve the problem by constructing a 

dynamic load assignment table and continuously optimizing 
the assignment, which can be implemented in our real sys­
tem prototype. 
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5.2 Dynamic Load Scheduling 

A fundamental problem in the design space of HEB is 
how to assign load power to the most appropriate heteroge­
neous buffers. During each time-slot (e.g., 10 minutes by 
default), HEB dynamically distributes load power demands 
between batteries and SCs. Figure 9 shows the power man­
agement framework. 

Prediction: To identify the average peak power charac­
terization (e.g., small peaks or large peaks) of next time-slot, 
we employ time series prediction (TSP) method [45]. Spe­
cially, we leverage the classical triple exponential prediction 
(Holt-Winters exponential prediction) algorithm [46] to pe­
riodically predict the power demands, which can analyze the 
nature of the history and current data, extract meaningful 
statistics trend and predict future values. The algorithm 
maintains two groups of series data: the peak power and 
valley power. It predicts the peak power demands (Ppeak) 
and valley power (Pvalley) of next time-slot. The difference of 
Ppeak and Pvalley (MM =Ppeak - Pvalley) is the net amount 
power that needed from the energy buffers. Note that we 
select a time series prediction method that is effective for 
the data center power consumption patterns, but any sophis­
ticated prediction approaches can be integrated into our 
power management framework. 

Small Peaks Handling: When the average height of 
predicted power mismatching is mild and the duration is 
short, the HEB controller treats the batteries and SCs as a 
two-tier energy storage system. Either batteries or SCs can 
handle these small peak power mismatches. In order to en­
hance energy efficiency, the HEB controller preferentially 
assigns all loads power on SCs (RA =1). This is because SCs 

have much better round-trip energy efficiency and they can 
be swiftly charged and discharged without degradation. On­
ly when all the SCs are used up, the HEB controller will 
turn on all the battery relays and assign all server loads on 
batteries (RA =0) to compensate the energy shortages. In 

brief, SCs are aggressively used to handle the small peak 
power mismatching for high energy efficiency while main­
taining minimal server down time by employing batteries as 
supplement during the interval when SCs are used up. 
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Figure 9. An overview of HEB power management framework 

( includes prediction, small peak/large peak handling and uti­

lizing valley power mismatching for charging at any time) 

Large Peaks Handling: The HEB controller treats bat­
teries and SCs as a unified energy buffer when the predicted 
average peak power mismatching is significant and the du­
ration is long (large peaks). In other words, the HEB con­
troller schedules all the loads on batteries and SCs simulta­
neously to jointly shave large peaks. To maximize energy 
efficiency and minimize server downtime, we should care­
fully allocate an optimal RA (0< RA <1). 

To this end, the HEB controller maintains a power allo­
cation table (PAT) for its heterogeneous energy buffers. 
This table specifies initial and coarse-grained load assign­
ments on batteries and SCs. Each entry of the power alloca­
tion table contains the available energy levels of the battery 
and SC pools, power demands and the server ratio that indi­
cates the fractional servers powered by SCs. The initial val­
ue of each entry is obtained via profiling in a pilot scheme 
like Figure 6. The profiling values in the table are not fixed 
all the time, and they can be optimized and updated (de­
tailed in Section 5.3). Figure 10 shows the pseudo code of 
the server loads assignment (Lines 1-11). Based on the 
available energy buffer and predicted average power mis­
matching value at each time-slot, the HEB controller can 
fmd the energy allocation ratio RA or similar RA in the PAT 

and dynamically control the on/off power switches to assign 
different ratio servers powered by SCs or batteries. However, 
as it cannot profile all scenarios of available energy buffer 
and power demands, the number of entries in PAT is limited. 
Therefore, it may be difficult to find an optimized energy 
allocation ratio RA in such initial PAT. 

5.3 Optimizing Energy Buffering Allocation 

As mentioned above, the PAT table cannot always 
guarantee the optimal load assignment results because (1) 
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IIAt the beginning of each time-slot 

1. Obtain current se capacity: SCinitial , Battery capacity: BAinitial, and predicted 

power mismatching Llflt(Llflll = Pp", -P,alley); 
2. For table index = 1 to n il search the look-up lable PAT 
3. If (SCindex == SCinitial && BAindex == BAinitia/&& Pindex == Lln� 
4. find_index = index; 

5. End 
6. End 
7. If (find_index == 0) Ildoes nOljind a matched enlly 
8. find_index = Similar(SCinitial l BAlnitial1 LlAf1; / /search the most similar value 
9. End 
10. Server ratio RA = RAIf'ad_'adexJ;! /Find the ratio in PA T; 
11. Allocate different numbers of servers to SC and BA based on RA; 
12. Collect running results at the end of the time-slot. 

13. If (index == 0) Ilnew entry (new energy buffer capacity & power demand) 

14 Round(SC'ait'al, BA'ait'al, P); Ilformat data, P is the actual power demand 
15 Add {SC'ait'al, BA'ait'al, P, RA} to the PAT look-up table; 
16 Else Ilupdote the existing entry of the PAT table 
17. If (SCend/BAend> SCinitia!lBAinitial) 
18. RA = RA + !::'r; IISC receives increased server assignmenl 
19. Else If (SC"diBA"d< SC,aie,aIIBA,aie,a/) 
20. RA = RA - !::,r; I I BA receives Increased server asslgnmenl 
21. End 
22. Update {SC'aie'al, BA'aie'al, P, RA} in the PAT look-up table; 

23. End 

Figure 10. Algorithm for smartly handling large peaks 

the limited profiling data are based on a pilot run and can be 
less accurate, and (2) with the battery and SC aging, their 
ability of handling power mismatching will decline. There­
fore, the table needs to be dynamically updated. 

To ensure effectiveness, the HEB controller updates the 
PAT table during runtime. Figure 10 shows the pseudo code 
of the two kinds of optimization operations (Lines 12-23): 
(1) adding new entries into the table, and (2) updating the 
existing entry. It fIrst collects the running results at the end 
of the time slot, which includes the real power mismatching 
value and server load allocation ratio RA of current time slot. 

When adding a new entry, the results are formatted and be­
come coarse-grained to avoid too many entries in the table. 
When updating the existing entry, the HEB controller 
checks the remaining capacity in SCs and batteries. If the 
actual battery capacity decline rate (Line 17) is faster than 
expected (e.g., due to internal wear-out, batteries were as­
signed too much load and have higher discharge rate than 
SCs), the HEB controller will increase the load ratio by 
L1r= 1 % (default value) to increase the usage of SCs in future 
allocation. If the actual battery discharging rate is slower 
(Line 19) than expected, HEB will reduce the load ratio to 
decrease the usage of SCs. This optimization operation is to 
balance the using of SCs and batteries for archiving mini­
mized server downtime. The optimization algorithm can 
progressively correct any inaccuracies caused by profiling 
or energy buffer aging in its following iterations. As a result, 
the HEB controller can self-optimize its performance by 
fine-tuning load assignment effectiveness over the lifetime. 

6. Evaluation Methodology 

Based on the proposed heterogeneous energy buffer ar­
chitecture, we build a scale-down prototype to evaluate our 
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Heterogeneous Energy Storage Research 
Prototype System 

1: Relays (two-way relays) 

2: Heterogeneous energy storage cabinet 

3: Control node (includes Siemens 57-200 PLC) 

4: Controller (running power management algorithms) 

5: System real-time running state monitoring 

6: Inverter (two 1000W DC to AC power inverter) 

7: Lead-acid batteries (24V DC system) 

8: Sensors (voltage, current and temperature) 

9: Small and large super-capacitors (sCs) 

10: Small and large LA-batteries (24V DC system) 

11: Server rack (Iow power servers) 

Figure 11. Full-system prototype of HEB - a heterogeneous energy storage research platform 

design and power management framework. As shown in 
Figure 11, the platform includes several small and large 
batteries/SCs connected by relays to power different servers. 
There are six two-way relays in our prototype which can 
simultaneously connect to six servers. The servers are 
mounted on the rack and respectively connected to IPDU 
The IPDU can switch ON/OFF server power supply, report 
the server power draw every second and send it to the con­
troller by SNMP commands over the Ethernet. Any power 
management algorithm can be integrated in the controller to 
monitor and control all components in our prototype. Our 
platform can be deployed in either conventional power un­
der-provisioned data centers or renewable energy powered 
data centers to handle the power mismatching. 

We choose various datacenter workloads from Hibench 
[47] and CloudSuite [48]. Hibench contains nine typical 
Hadoop workloads (including micro benchmarks, HDFS 
benchmarks, web search benchmarks, etc.). CloudSuite 
benchmarks are based on real-world software stacks and 
consist eight popular applications in today's data centers. As 
shown in Table 1, we select eight workloads from five clas­
sified categories. Within each experiment, a workload can 
be executed iteratively. 

Based on the total capacity of energy storage buffers, 
we select six lower-power computing nodes that use Intel 
Core i7-2720QM 4-core CPU Our servers support dual­
corded power supplies, one is from the energy storage 
source and one is from the utility power via IPDU The 
measured idle power and peak power of each server are 
30W and 70W, respectively. The low-power servers are 
matched with our energy storage prototype system. 

Workloads (Abbr.) Catel!;ory 

Page Rank Algorithm of Mahout (PR) Web Search Benchmarks 
Word Count Program on Hadoop (WC) Micro Benchmarks 
Data Analysis (DA) CloudSuite Benchmarks 
Web Search (WS) CloudSuite Benchmarks 
Media Streaming (MS) CloudSuite Benchmarks 
Dfsioe (DFS) HDFS Benchmarks 
Hivebench (HR) Data Analytics 
Ierasort (IS) Micro Benchmarks 

Table 1. The evaluated workloads [47, 48] 

Peak 
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Our server system kernel can be configured with the on 
demand frequency scaling governor. We can set the low 
frequency as 1.3GHz and the high frequency as 1.8 GHz. To 
fully evaluate our small and large peak power management 
policies, we divide the eight workloads into two groups, one 
group runs on the high frequency and the other group runs 
on the low frequency. In this way, we can construct two 
general peak shapes (small peaks and large peaks) to fully 
evaluate our power management policies. Note that our 
method is similar to [8], which leverages SPECjbb to con­
struct various peak demand curves for fully evaluating the 
power management algorithms. 

In our experiments, the controller can collect the utility 
power consumption of all the servers via IPDU We set a 
maximum power drawn from utility (utility power budget, 
e.g., 260W for six servers). Whenever the server demands 
exceed the budget (peak occurs), the controller would tap 
into the energy stored in the energy buffers. Oppositely, the 
remaining energy can charge energy buffers when the server 
power demands are lower than the budget. 

7. Experimental Evaluation 

This section evaluates the benefits of provisioning het­
erogeneous energy buffers for data centers. To be more spe­
cific, we compare HEB to five kinds of power management 
schemes as summarized in Table 2. Among those, BaOnly is 
a representative peak power management technique similar 
to prior work [8], which only uses homogeneous UPS bat­
teries to shave peak power. Note that with BaOnly, the serv-

Schemes Architecture Method description 

BaOnly Battery only Only use battery to handle power mismatch 
BaFirst Hybrid Discharge batteries first, then SCs if the capaci-

(Battery+SC) ty of batteries are empty 

SCFirst Hybrid Discharge SCs first, then batteries 
HEB-F Hybrid Load-aware assignment based on power de-

mand value of the last time-slot 
HEB-S Hybrid Load-aware assignment based on statics and 

limited profiling information 
HEB-D Hybrid Load-aware assignment based on our dynamic 

and optimized power management framework 

Table 2. The evaluated power management schemes 
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Figure 12. The comparison of different power management policies (all results are normalized to BaOnly scheme) 

ers are still mainly powered by utility grid when there is no 
peak power. Although BaFirst and SCFirst both use hybrid 
energy buffers, they lack intelligent server allocation poli­
cies and only employ a priority-based method to handle 
power mismatches. The HEB-F and HEB-S are two naiVe 
implementations of HEB. The HEB-F assigns the heteroge­
neous energy buffers to different servers based on the power 
demand information of last time-slot. The HEB-S assigns 
load power based on a static profiling table that has limited 
entries. The HEB-D is our proposed dynamic and optimized 
power management framework. 

The purpose of comparing HEB-D with HEB-F and 
HEB-S is to understand the impact of reduced prediction 
error rate on performance improvement. To fairly compare 
the perfonnance improvement of battery only and hybrid 
energy buffers, their total capacity is set to the same by con­
figuring the small and large SCs and batteries in the proto­
type (the initial ratio of SCs and batteries is 3:7). 

Note that this study mainly compares systems with 
equal storage capacity (so that they have the same worst­
case emergency handling capabilities). The reason why we 
did not compare "equal size" or "equal cost" systems is that 
they are technology-/vendor- dependent. The capacity of 
SCs has a direct impact on the performance and lifetime of 
our systems. For "equal-cost" and "equal-size" designs, it is 
very hard to tell if the improvement is a result of our opti­
mization scheme or a result of the capacity change due to 
different SC technologies. 

By running six different power management policies in 
our controller, we evaluate the overall perfonnance of peak 
shaving in under-provisioned datacenters and renewable 
energy utilization (REU) in renewable energy datacenters. 
We further vary the total capacity of hybrid energy buffers 
and the ratios between SCs and batteries to evaluate their 
performance impact. At last, we analyze the cost breakdown, 
return on investment (ROI, CAP-EX benefit) and peak shav­
ing revenue (OP-EX gain) of HEB. In the following para­
graphs, we present the detailed performance comparisons of 
HEB with other five baseline power management policies 
under different metrics. 
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7.1 Energy Efficiency 

To improve the efficiency of energy storage systems, 
one must carefully assign and utilize both SCs and batteries 
to obtain maximal energy efficiency. 

Figure 12(a) shows the overall energy efficiency meas­
urement. Compared to a conventional battery-only power 
provisioning scheme, the heterogeneous energy buffers 
yield a visible efficiency improvement. The reason why 
BaFirst is very close to a battery only design is that BaFirst 
always charge/discharge battery first which reduces the 
chances of SCs utilization. If we always discharge the SC 
first, we can greatly reduce energy loss such as SCFirst, but 
when the SCs are depleted, batteries would have to handle 
all the high current drawn which still leads to efficiency 
degradation. Therefore, employing load-aware assignment 
to balance the usage of SCs and batteries can achieve better 
efficiency improvement (e.g., HEB). The energy assignment 
of HEB-F is based on the former power demand information 
which is a nai"ve prediction scheme and may lead to incor­
rect energy assignment. The errors in prediction decrease 
energy efficiency. The HEB-S often makes a sub-optimal 
energy assignment as it only has a coarse-grained profiling 
table. In contrast, HEB-D can achieve better energy effi­
ciency improvement. In addition, HEB-D manifests higher 
efficiency on both small peak workloads (as SCs are prefer­
entially used) and large peak workloads (as loads are dy­
namically allocated with energy between batteries and SCs) 
via our proposed policy. The improvement is 52.5% for 
small peaks and 27.1 % for large peaks on average. 

7.2 Server Performance 

Mitigating performance degradation is one of the key 
goals of leveraging energy storage devices to handle power 
mismatching. We employ the server down time as the pri­
mary performance metric. In our experiment, server down­
time is the aggregated time during which server power de­
mands exceed power budget but the energy buffers do not 
have enough power to shave the peak. We chose the least 
recently used servers to shut down when we have to. Note 
that in this paper we do not use other control knobs such as 



Figure 13. The impact of different capacity ratios (m :n  means 

the ratio between SCs and batteries. All the metrics are nor­

malized to the ratio of 3:7) 

DVFS for simplifying the performance comparison of dif­
ferent power management schemes. Therefore, our evalua­
tion of server downtime reflects the average availability 
yielded by a power management scheme. To compare the 
server downtime of different power management policies, 
we intentionally lower the utility power budget to trigger 
server downtime. Due to the Peukert law's effect, it is diffi­
cult to adopt BaOnly to handle the large peaks. Doing so 
may lead rapid drop of battery voltage, especially when the 
batteries have low SoC (State of Charge). The server down­
time can be mitigated with integrated SCs in the energy 
buffer, as shown in Figure 12(b). As can be seen, HEB can 
always maintain the longest discharging duration by dynam­
ically adjusting the server assignment between SCs and bat­
teries. The HEB-D can reduce more server downtime (41 %), 
especially for the large peak workloads. 

7.3 Battery Lifetime 

One of the original intentions of introducing SCs as 
heterogeneous energy buffers is to protect batteries from 
large current discharging and prolong their lifetime. We use 
the Ah-Throughput Battery Lifetime Model [49] to present 
the anticipated battery lifetime based on detailed battery 
usage logs. As shown in Figure 12(c), the SC preferential 
power management policy has more battery life cycle since 
batteries are used as backup (e.g., SCFirst and HEB). The 
HEB has better battery lifetime improvement as it only uses 
SCs to shave small peaks and jointly utilizes SCs and batter­
ies to shave large peaks for protecting batteries from large 
current discharging. The HEB-D can improve the battery 
lifetime by 4.7X compared to the BaOnly scheme. Com­
pared to the lifecycle of SCs, battery lifetime is the bottle­
neck of heterogeneous energy system lifespan. Longer bat­
tery lifetime implies lower replacement and maintenance 
cost of HEB. 

7.4 Energy Utilization in Renewable Data Centers 

We further present the benefit of heterogeneous energy 
buffer provisioning in light of renewable powered data cen­
ters. As mentioned in Section 2, it is critical to improve the 
renewable energy utilization (REV) for storing more green 
and clean energy to handle power mismatches in renewable 
data centers. Compared with pure battery equipped systems, 
SCs can absorb renewable energy without upper-bound of 
charging current, which can achieve more energy utilization. 
We tap into solar power to our prototype system instead of 
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Figure 14. The impact of capacity growth on (a) energy effi­

ciency, (b) server downtime, (c) battery lifetime and (d) REV 

utility power to evaluate the RED. Note that we have a 
small solar generation system on the roof of our Lab, which 
can provide real solar power for our experiments. The eval­
uation results show that only if introducing SCs to the ener­
gy buffer, the REV can be significantly improved (e.g., 
BaFirst, SCjirst and HEB). As BaFirst gives the first priori­
ty to batteries, it may lose some chances to absorb renewa­
ble energy with large charging current. SCFirst and HEB 
always utilize SC first to absorb renewable energy; they 
have very similar REV as shown in Figure 12(d) and all of 
them improve the REV about 81 % on average compared 
with the pure batteries provisioning scheme. 

7.5 Capacity Planning 

We further evaluate the impact of different capacity 
provisioning for heterogeneous energy buffers. Firstly, by 
keeping the constant total capacity of the energy buffer, we 
adjust the capacity ratio between SCs and batteries. In detail, 
we adjust the Depth-of-Discharge (DoD) of energy buffers 
to generate different capacity ratios for batteries and SCs. 
For example, given 8Ah battery, we set the targeted DoD 
level as 60%. Its useable capacity is 4.8Ah (8Ah*60%). Our 
controller can disable the utilization of batteries once it hits 
its DoD threshold. We iteratively run the eight workloads 
with HEB-D power scheme and respectively obtain the av­
erage perfonnance of energy efficiency, server downtime, 
battery lifetime and REV, as shown in Figure 13. The re­
sults show that the more ratios of SCs can obtain better per­
fonnance improvement. Moreover, the impact of the capaci­
ty ratio is different across the four metrics. The battery life­
time has the most significant improvement as more SCs can 
be used to shave peaks. The improvement of energy effi­
ciency and server downtime gradually becomes constant. 

Secondly, we keep the capacity ratio between SCs and 
batteries constant (3:7), and increase the total installed ca­
pacity of energy buffers to evaluate its effect. In our exper­
iments, we set a low DoD (40%) of SCs and batteries, and 
then gradually decrease the DoD (40%, 50%, 60%, 70%, 
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Figure 15. Cost analysis: (a) Cost breakdown, (b) ROI of hybrid energy storage and (c)The benefit of shaving peak power by 

ESD (in an 8-years operation period, HEB achieves 1.9X revenue from peak shaving benefit compared to BaOnly) 

80%) to mimic the system capacity growth. Note that the 
higher DoD has less useable capacity. We run the eight 
workloads with HEB-D power scheme and measure the per­
formance as shown in Figure 14. It's observed that the larg­
er capacity can improve the efficiency and system resiliency. 
However, the relationship between performance and capaci­
ty may be non-linear. The results contribute to the right­
sizing of the heterogeneous energy buffers for the real sys­
tems as the cost of provisioning energy buffers grows with 
the increased capacity. 

7.6 TCO Analysis 

Cost Breakdown: Figure 15(a) shows the cost break­
down of our HEB prototype. The energy storage devices 
(SCs and batteries) are the most expensive components (ac­
count for 55% of the overall expenditure). With our existing 
setup a HEB node powers six servers and its total cost is 
less than 16% of the server total cost (approximate $4,850). 

Return-On-Investment (ROI): We further evaluate in 
light of under-provisioned power infrastructure, whether it 
is worth to invest hybrid energy storage to reduce CAP-EX. 
Similar to [6], we define the cost of procuring hybrid energy 
buffers to sustain e hours of peaks as e* CHEB ($/Watt), and 
the CAP-EX cost of the power infrastructure to under­
provision by Cap ($/Watt). The ROI for hybrid energy buff­
er can be calculated as: (Cap - e* CHEB) / (e* CHEB) , where the 
CHEB is the total cost of SCs and batteries. We assume the 
battery cost Cbal is 300$/KWh and SC cost Csc is 
lOK$/KWh, as reported in [32, 37, 38]. The hybrid energy 
cost is: CHEB = Cba/X+Csc *y, where x and y are the ratios of 
batteries and SCs and we set x=0.3 and y=0.7 based on our 
prototype. The Ccap is reported to grow by $10-25 for every 
provisioned Watt. 

We vary a wide range of Ccap from 2 to 20 ($/Watt) and 
calculate the ROI in different peak durations as shown in 
Figure 15(b). Note that the corresponding cost is amortized 
during the lifetime (e.g., battery: 4 years, Se: 12 years and 
infrastructure: 12 years). We observe a positive ROI across 
most of the operating regions. This suggests that deploying 
hybrid energy buffer is worthwhile. 

Gain from Peak Shaving: Utilities often charge data­
centers expensive peak cost [8]. Energy storage buffer can 
be used to shave peak power and save the OP-EX cost [6, 8, 
32]. We assume a 100KW datacenter deployed with 20KWh 
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homogenous batteries or hybrid energy buffer (SCs account 
for 30% and batteries account for 70%). The peak tariff is 
12$/kW. Applying different peak shaving policies to the 
two types of energy buffers, we compare their revenues due 
to peak cost reduction within 8 years, as shown in Figure 
15(c). The break-even point (in year) for BaOnly (battery 
cost is 300$/KWh) is 4.2 year, similar to [8]. Taking BaOn­
ly as baseline, we calculate the peak shaving gain of other 
three heterogeneous schemes. Our HEB scheme can im­
prove energy efficiency and reduce server downtime by 39.7% 
and 41 % respectively, which are proportional to the harvest­
ed peak shaving benefit. The break-even points of BaFirst, 
SCFirst and HEB are 6.3, 4.9 and 3.7 years respectively. 
Even through the hybrid energy buffer has expensive initial 
CAP-EX cost than battery only buffer, with the highly effi­
cient peak shaving policy of HEB, we can earn more than 
1.9X revenue from peak shaving benefit by accumulating 
and then averaging the per-year net profit within 8 years. On 
the contrary, if not appropriately managed, leveraging hy­
brid energy buffer may be less profitable than utilizing ho­
mogenous buffer (e.g., the net profit of BaFirst is less than 
that of BaOnly). 

In sum, our HEB technology is very cost-effective, with 
the hybrid energy storage devices (ESDs) and the efficient 
peak shaving algorithm, we can achieve considerable in­
vestment return from CAP-EX cost and earn great peak 
shaving benefit from OP-EX cost. 

8. Related Work 

We summarize the leading-edge studies on power provi­
sioning and energy storage techniques in datacenters. 

Novel Data Center Power Provisioning Schemes: With 
the increasing of scale and capacity, modern data centers 
become more power-constrained and carbon-constrained. 
To address the issues, many novel power provisioning 
schemes begin to spring up recently [2-8, 13-18,30]. Wang 
et al. [30] proposed to virtualized power provisioning 
scheme in data centers, their vPower can significantly im­
prove system utilization and application performance when 
working in under-provisioned power infrastructure. Pelley et 
al. [5] presented a dynamic power provisioning scheme in 
data centers. Their Power-Routing exploits shuffled topolo­
gies to dynamically connect the servers and diverse PDUs 
while balancing the workload across the PDUs for reducing 



the power infrastructure provisioning cost. Meanwhile, there 
are many renewable power provisioning schemes in data 
centers to reduce carbon emission [13-18]. We propose het­
erogeneous power provisioning scheme in data centers, es­
pecially, we focus on dispatching heterogeneous energy 
buffering to dynamically and efficiently handle the power 
mismatching in the power under-provisioned data centers 
and renewable energy powered data centers. 

Emerging Energy Storage Techniques: Recent efforts 
start to repurpose UPS batteries [6, 8,29,31,32,50,51] to 
address peak power mismatching issue in data centers for 
decreasing power cost while maintaining load performance. 

Govindan et al. [6] discussed the benefits and limita­
tions of leveraging energy storage device (ESD, e.g., lead­
acid batteries) in data centers to reduce data center peak 
power cost. Nonetheless, the proposed centralized architec­
ture can incur 10-15% energy loss due to double­
conversions. Kontorinis et al. [29] proposed distributed en­
ergy storage system (per-server UPS) to store energy during 
low load activity periods and use the energy to shave each 
server's peak. However, as battery has many constrains, 
several recent works have tried to explore new tuning knob. 
Zheng et al. [31] exploited centralized thermal energy stor­
age (TES) to shaving peak power in data centers. As limited 
by the response time, they also combine the conventional 
UPS system to handle the frequent and transient peaks. 
Likewise, SCs have grabbed certain attention in recent char­
acterization work [32, 52]. Wang et al. studied the multiple 
ESD technology provisioning and placement options in data 
centers. However, no real implantation and power manage­
ment policies have been proposed. Distinguished from prior 
works, we build a real heterogeneous energy buffer proto­
type and develop new operation optimization algorithm to 
make SCs more affordable and economic for large-sale de­
ployment in datacenters. 

9. Conclusions 

In this study, batteries and SCs are first pooled and dy­
namically dispatched in data centers as heterogeneous ener­
gy buffers. We investigate the characterization of different 
energy buffers (SCs and batteries) with a test-bed. After 
analyzing the current energy storage architecture, we pro­
pose HEB, a novel heterogeneous energy buffering power 
provisioning architecture that enables data centers to flexi­
bly deploy SCs and batteries. To efficiently utilize the het­
erogeneous energy buffers, we tailored a power manage­
ment framework to intelligently and dynamically assign 
different ratio server loads between SCs and batteries for 
achieving higher energy efficiency and lower performance 
degradation when handling power mismatching events. 
Based on the HEB design, we implement a scale-down pro­
totype from scratch. We evaluate different power manage­
ment policies with the prototype and the results show that 
HEB could improve energy efficiency by 39.7%, extend 
UPS lifetime by 4.7X, reduce system downtime by 41 %, 
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and improve renewable energy utilization 81.2%. HEB man­
ifests high CAP-EX ROI and is able to gain more than 1.9X 
peak shaving benefit during an 8-years operation period. We 
believe that deploying HEB to emerging data center power 
infrastructures could significantly improve their efficiency, 
resiliency and economy. 
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