Performance Isolation Anomalies in RDMA

Yiwen Zhang

with Juncheng Gu, Youngmoon Lee, Mosharaf Chowdhury, and Kang G. Shin

RDMA Is Being Deployed in Datacenters

Cloud operators are aggressively deploying RDMA in datacenters[1][2][3]

[1] Guo, Chuanxiong, et al. "RDMA over Commodity Ethernet at Scale. "SIGCOMM'16
[2] Mittal, Radhika, et al. "TIMELY: RTT-based Congestion Control for the Datacenter." SIGCOMM'15
[3] Zhu, Yibo, et al. "Congestion control for large-scale RDMA deployments." SIGCOMM'15

RDMA Is Being Deployed in Datacenters

Cloud operators are aggressively deploying RDMA in datacenters[1][2][3]

Growing demands in ultra-low latency applications

• Key-value store & remote paging

High bandwidth applications

• Cloud storage & memory-intensive workloads

[1] Guo, Chuanxiong, et al. "RDMA over Commodity Ethernet at Scale. "SIGCOMM'16
[2] Mittal, Radhika, et al. "TIMELY: RTT-based Congestion Control for the Datacenter." SIGCOMM'15
[3] Zhu, Yibo, et al. "Congestion control for large-scale RDMA deployments." SIGCOMM'15

RDMA Is Being Deployed in Datacenters

Cloud operators are aggressively deploying RDMA in datacenters

RDMA provides both low latency and high bandwidth

- Order-of-magnitude improvements in latency and throughput
- With minimal CPU overhead!

Great! But There Are Limits ...

At large-scale deployments, RDMA-enabled applications are unlikely to run in vacuum – the network must be shared

Great! But There Are Limits ...

At large-scale deployments, RDMA-enabled applications are unlikely to run in vacuum – the network must be shared

HPC community uses static partitioning to minimize sharing[1]

Researches in RDMA over Ethernet-based datacenters focus on the vagaries of Priority-based Flow Control $(PFC)_{[2][3]}$

[1] Ranadive, Adit, et al. "FaReS:Fairresource scheduling for VMM-bypass In Infiniband devices." CCGRID 2010
[2] Guo, Chuanxiong, et al. "RDMA over Commodity Ethernet at Scale. "SIGCOMM'16
[3] Zhu, Yibo, et al. "Congestion control for large-scale RDMA deployments." SIGCOMM'15

What Happens When Multiple RDMA-Enabled Applications Share The Network?

Scenarios	Fair?
10B vs. 10B	

Scenarios	Fair?
10B vs. 10B	
10B vs. 1MB	

Scenarios	Fair?
10B vs. 10B	
IOB vs. IMB	
IMB vs. IMB	

Scenarios	Fair?
10B vs. 10B	
IOB vs. IMB	
IMB vs. IMB	
IMB vs. IGB	

Benchmarking Tool[1]

Modified based on Mellanox Perftest tool

- Creates 2 flows to simultaneously transfer a stream of messages
- Single queue pair for each flow
- Measures bandwidth and latency characteristics only when both flows are active

Benchmarking Tool[1]

Modified based on Mellanox Perftest tool

- Creates 2 flows to simultaneously transfer a stream of messages
- Single queue pair for each flow
- Measures bandwidth and latency characteristics only when both flows are active
- Both flows share the same link

[1] https://github.com/In niswap/frdma_benchmark

RDMA Design Parameters

RDMA Verbs

• WRITE, READ, WRITE WITH IMM (WIMM), and SEND/RECEIVE

Transport Type

• All experiments using Reliable-Connected (RC) Queue Pairs

INLINE Message

• Enabled INLINE message for 10 Byte and 100 Byte messages in the experiment

Application-Level Parameters

Request Pipelining

- Provide better performance, but hard to configure for fair comparison
- Disabled by default

Polling mechanism

• Busy vs Event-triggered polling

Application-Level Parameters

Message Acknowledgement

- Next work request is posted until the WC of the previous one is polled from CQ
- No other flow control acknowledgment is used

Define an Elephant and a Mouse

Elephant vs. Elephant

Compare two throughput-sensitive flows by varying verb types, message sizes, and polling mechanism.

- WRITE, READ, WIMM, & SEND verbs transferring IMB & IGB messages
- Total amount of data transferred fixed at ITB
- Both flows using event-triggered polling
- Generated bandwidth ratio matrix

Elephant vs. Elephant: Larger Flows Win

		SEI	SEND WIMM REA		WIMM		AD	WR	ITE
		IMB	IGB	IMB	IGB	IMB	IGB	IMB	IGB
WRITE	IGB								
VVIXIT L	IMB								
READ	IGB								
READ	IMB								
WIMM	IGB						-		
• • n · n · 1	IMB					-			
	IGB								
SEIND	IMB								

Fair Unfair

Getting Better with Larger Base Flows

Getting Better with Larger Base Flows

Polling Matters: Is Busy-polling Better?

Both flows use busy-polling.

But There Is a Tradeoff in CPU Usage

Scenarios	Fair?
10B vs. 10B	
IOB vs. IMB	
IMB vs. IMB	
IMB vs. IGB	

Scenarios	Fair?
10B vs. 10B	
IOB vs. IMB	
IMB vs. IMB	Fair
IMB vs. IGB	

Scenarios	Fair?
10B vs. 10B	
IOB vs. IMB	
IMB vs. IMB	Fair
IMB vs. IGB	Unfair

Scenarios	Fair?
10B vs. 10B	
IOB vs. IMB	
IMB vs. IMB	Depends on CPU
IMB vs. IGB	Unfair

Scenarios	Fair?
10B vs. 10B	
IOB vs. IMB	
IMB vs. IMB	Depends on CPU
IMB vs. IGB	Depends on CPU

Mouse vs. Mouse: Pick a Base Flow

Compare two latency-sensitive flows with varying message sizes.

- All flows using WRITE operation with busy polling
- 10B, 100B and 1KB messages
- Pick 10B as base flow
- Measured latency and MPS of the base flow transferring 10 million messages at the presence of a competing flow

Mouse vs. Mouse: Worse Tails

Scenarios	Fair?
10B vs. 10B	
IOB vs. IMB	
IMB vs. IMB	Depends on CPU
IMB vs. IGB	Depends on CPU

Scenarios	Fair?
10B vs. 10B	Good enough
IOB vs. IMB	
IMB vs. IMB	Depends on CPU
IMB vs. IGB	Depends on CPU

Mouse vs. Elephant

Study performance isolation of a mouse flow running under a background elephant flow.

- All flows using WRITE operation
- All mouse flows sending 10 millions messages
- Mouse flows using busy polling while background elephant flows using eventtriggered polling
- Measured latency and MPS of mouse flows

Mouse vs. Elephant: Mouse Flows Suffer

Mouse vs. Elephant: Mouse Flows Suffer

Scenarios	Fair?
10B vs. 10B	Good enough
IOB vs. IMB	
IMB vs. IMB	Depends on CPU
IMB vs. IGB	Depends on CPU

Scenarios	Fair?
10B vs. 10B	Good enough
IOB vs. IMB	Unfair
IMB vs. IMB	Depends on CPU
IMB vs. IGB	Depends on CPU

Hardware is Not Enough for Isolation

So far we ran all experiments using Mellanox FDR ConnectX-3 (56 Gbps) NIC on CloudLab.

Switch to Mellanox EDR ConnectX-4 (100 Gbps) NIC on the Umich Conflux cluster.

- The isolation problem in the elephant vs. elephant case still exists with a throughput ratio of 1.32.
- In the mouse vs. mouse case the problem appears to be mitigated; we did not observe large tail-latency variations when two mouse flows compete.
- In the mouse vs. elephant scenario, mouse flows are still affected by large background flows, where the median latency increases by up to 5×.

What Happens to Isolation in More Sophisticated and Optimized Applications?

Performance Isolation in HERD[1]

Interested to know how isolation is maintained in HERD **at a presence of a background elephant flow**.

Running HERD on the Umich Conflux cluster.

- 5 million PUT/GET requests.
- Background flows using IMB or IGB messages with event-triggered polling
- Measured median and tail latency of HERD requests with and without a background flow

[1] Kalia, Anuj, et al. "Using RDMA efficiently for key-value services" SIGCOMM 2014

HERD vs. Elephant: HERD Also Suffers

HERD vs. Elephant: Summary

HERD also has isolation issues when running with big background flows

Currently, we are working on a solution to provide isolation in RDMA

Special thanks to Yue Tan's great help in generating isolation data on HERD

Summary

- When the size difference of two flows are small, no matter they are small flows or very big flows, the isolation appears to be good
- How fast an application can post RDMA requests onto the RNIC is the only thing that matters in a throughput-sensitive environment
- When the size difference of two flows are big, there is a performance degradation of the smaller flow
- Current hardware might not help to entirely resolve the issue

Mouse Flow Latency

Elephant vs. Elephant: Matrix

		SEND		WIMM		READ		WRITE	
		IMB	IGB	IMB	IGB	IMB	IGB	IMB	IGB
WRITE	IGB	1.41	1.00	1.44	1.00	1.39	1.00	I.40	1.00
	IMB	1.02	0.71	1.00	0.72	0.99	0.71	1.00	
READ	IGB	1.40	1.00	1.43	1.00	1.37	1.00		-
	IMB	1.08	0.71	1.04	0.71	1.00			
WIMM	IGB	1.40	1.00	1.44	1.00				
	IMB	1.00	0.70	1.00		-			
SEND	IGB	1.41	1.00		-				
	IMB	1.00		-					

Mouse vs. Mouse: Unpredicted Behavior

HERD vs. Elephant: HERD Also Suffers

HERD vs. Elephant: HERD Also Suffers

Summary

Elephant vs. Elephant:

- Polling mechanism dictates bandwidth allocation
- How fast an application can post RDMA requests onto the RNIC is the only thing that matters in a throughput-sensitive environment
- Tradeoff between CPU and Bandwidth

Mouse vs. Mouse:

- Little predictability between flows using equal-sized messages
- Increase in tail latency and decrease in MPS
- Isolation issue mitigated when switching to better hardware

Summary

Mouse vs. Elephant:

- In the presence of both types of flows, latency-sensitive flows suffer
- The requests posted by the mouse flows may queue up in RNIC's queue buffer while the RNIC is doing continuous DMA reads from the main memory due to the background flow

HERD vs. Elephant:

Isolation issues remain when running with background elephant flows
 Up to 4x increase in the median latency